cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 137 results. Next

A380511 Expansion of e.g.f. exp(x*G(x)^2) where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 5, 55, 961, 23141, 711421, 26631235, 1175535425, 59786520841, 3442729157461, 221413508687471, 15730688410899265, 1223574846548300845, 103417508018836074701, 9437941200860641295611, 924934291227615821904001, 96881241931552168636182545, 10801002623361396194857667365
Offset: 0

Views

Author

Seiichi Manyama, Jan 26 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = if(n==0, 1, 2*n!*sum(k=0, n-1, binomial(2*n+k, k)/((2*n+k)*(n-k-1)!)));

Formula

a(n) = 2 * n! * Sum_{k=0..n-1} binomial(2*n+k,k)/((2*n+k) * (n-k-1)!) for n > 0.
a(n) = U(1-n, 2-3*n, 1), where U is the Tricomi confluent hypergeometric function. - Stefano Spezia, Jan 26 2025
E.g.f.: exp( Series_Reversion( x*(1-x)^2 ) ). - Seiichi Manyama, Mar 15 2025

A381751 Expansion of exp( Sum_{k>=1} binomial(8*k-1,2*k-1) * x^k/k ).

Original entry on oeis.org

1, 7, 252, 12866, 767460, 50005591, 3449225652, 247579862356, 18301102679444, 1383742325041292, 106516121515030768, 8319491960857739258, 657680525420544788060, 52522142073165048614002, 4230907373618147894630904, 343379827862952363210331624, 28051180121294369965012932980
Offset: 0

Views

Author

Seiichi Manyama, Mar 06 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(exp(sum(k=1, N, binomial(8*k-1, 2*k-1)*x^k/k)))

Formula

a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} binomial(8*k-1,2*k-1) * a(n-k).

A381752 Expansion of exp( Sum_{k>=1} binomial(10*k-1,2*k-1) * x^k/k ).

Original entry on oeis.org

1, 9, 525, 44067, 4338765, 467396050, 53346810991, 6339179481480, 775994115988525, 97182642466115275, 12392633418043399130, 1603634650155295053250, 210047857493659698690575, 27795006677556725604853840, 3710220786174094422360657000, 498998879378383167317202612400
Offset: 0

Views

Author

Seiichi Manyama, Mar 06 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(exp(sum(k=1, N, binomial(10*k-1, 2*k-1)*x^k/k)))

Formula

a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} binomial(10*k-1,2*k-1) * a(n-k).

A030983 Number of rooted noncrossing trees with n nodes such that root has degree 1 and the child of the root has degree at least 2.

Original entry on oeis.org

0, 3, 16, 83, 442, 2420, 13566, 77539, 450340, 2650635, 15777450, 94815732, 574518536, 3506232184, 21533144486, 132980242755, 825304177544, 5144743785545, 32199189658020, 202252227085755, 1274578959894450, 8056409137803600, 51063344718826440
Offset: 3

Views

Author

Keywords

Comments

From Andrei Asinowski, May 09 2020: (Start)
With offset 0 (i.e., a(0) = 0 and a(1) = 3), a(n) is the total number of down-steps after the final up-step in all 2_1-Dyck paths of length 3*n.
A 2_1-Dyck path is a lattice path with steps U = (1, 2) and d = (1, -1) that starts at (0,0), stays (weakly) above the line y = -1, and ends at the x-axis.
For n = 2, a(2) = 16 is the total number of down-steps after the final up-step in dUddUd, dUdUdd, dUUddd, UdddUd, UddUdd, UdUddd, UUdddd (thus, 1 + 2 + 3 + 1 + 2 + 3 + 4). (End)

Crossrefs

Column k=1 of A102892.
Cf. A006013.

Programs

  • Maple
    h := arcsin((3*sqrt(3)*sqrt(x))/2)/3:
    gf := x*(64/9)*sin(h)^6*(1 - sin(h)^2*(8/9)): ser := series(gf, x, 32):
    seq(coeff(ser, x, n), n=3..25); # Peter Luschny, Aug 08 2020
    # Recurrence:
    a := proc(n) option remember; if n < 4 then return 0 fi; if n = 4 then return 3 fi;
    -((378*n^3 - 4536*n^2 + 18102*n - 24024)*a(n - 2) + (-1271*n^3 + 10308*n^2 - 26857*n + 22020)*a(n - 1))/(180*n^3 - 1170*n^2 + 2070*n - 1080) end:
    seq(a(n), n=3..25); # Peter Luschny, Aug 08 2020
  • Mathematica
    a[n_] := Binomial[3n-5, n-2]/(n-1) - 2 Binomial[3n-8, n-3]/(n-2);
    a /@ Range[3, 25] (* Jean-François Alcover, Nov 03 2020, after A102892 *)
  • PARI
    a(n)=(19*n-31)*binomial(3*n-8, n-4)/(n-1)/(2*n-3); /* Joerg Arndt, Mar 07 2013 */
    
  • PARI
    concat(0, Vec((g->g^3*(3-2*g))(serreverse(x-2*x^2+x^3 + O(x^25))))) \\ Andrew Howroyd, Nov 12 2017

Formula

a(n) = (19*n - 31)*binomial(3*n - 8, n - 4)/(n - 1)/(2*n - 3).
G.f.: g^3*(3 - 2*g) where g*(1 - g)^2 = x. - Mark van Hoeij, Nov 09 2011 [That is, g = (4/3) * sin((1/3)*arcsin(sqrt(27*x/4)))^2 = x*(o.g.f. of A006013). - Petros Hadjicostas, Aug 08 2020]
From Vladimir Kruchinin, Mar 06 2013: (Start)
a(n) = binomial(3*n-5, 2*n-3)/(n-1) - 2*binomial(3*n-8, 2*n-5)/(n-2), n > 2.
a(n) = Sum_{i=1..n-3} binomial(3*i-2, 2*i-1) * binomial(3*(n-i-2), 2*(n-i-2)-1)/ (i*(n-i-2)). (End)
a(n) ~ (76*3^(3*n - 15/2))/(4^n*sqrt(Pi)*n^(3/2)). - Peter Luschny, Aug 08 2020
D-finite with recurrence 2*(n-1)*(2*n-3)*a(n) +(-43*n^2+196*n-213)*a(n-1) +2*(62*n^2-446*n+759)*a(n-2) -12*(3*n-14)*(3*n-16)*a(n-3)=0. - R. J. Mathar, Jul 26 2022
D-finite with recurrence 2*(n-1)*(n-4)*(2*n-3)*(19*n-50)*a(n) -3*(3*n-10)*(3*n-8)*(n-3)*(19*n-31)*a(n-1)=0. - R. J. Mathar, Jul 26 2022

A071948 Triangle read by rows of numbers of paths in a lattice satisfying certain conditions.

Original entry on oeis.org

1, 1, 2, 1, 4, 7, 1, 6, 18, 30, 1, 8, 33, 88, 143, 1, 10, 52, 182, 455, 728, 1, 12, 75, 320, 1020, 2448, 3876, 1, 14, 102, 510, 1938, 5814, 13566, 21318, 1, 16, 133, 760, 3325, 11704, 33649, 76912, 120175, 1, 18, 168, 1078, 5313, 21252, 70840, 197340, 444015
Offset: 0

Views

Author

N. J. A. Sloane, Jun 15 2002

Keywords

Comments

This is the table of h(n,k) in the notation of Carlitz (p.125). The triangle (with an offset of 1 rather than 0) enumerates two-line arrays of positive integers
............1 a_2 ... a_(n-1) a_n..........
............1 b_2 ... b_(n-1) b_n..........
such that a_i <= i (2 <= i <= n) and b_2 <= a_2 <= ... <= b_n <= a_n = k.
See A193091 and A211788 for other two-line array enumerations. - Peter Bala, Aug 02 2012

Examples

			Triangle begins
  1;
  1, 2;
  1, 4,  7;
  1, 6, 18, 30;
  1, 8, 33, 88, 143;
		

Crossrefs

Row sums give A001764.
Rows are the reversals of the rows of A092276.

Programs

  • Maple
    T := proc(n,k) if k<=n then (n-k+1)*binomial(2*n+k+1,k)/(n+1) else 0 fi end: seq(seq(T(n,k),k=0..n),n=0..10);
  • Mathematica
    t[n_, k_] /; k <= n := (n-k+1)*Binomial[2*n+k+1, k]/(n+1); t[, ] = 0; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 14 2014 *)
  • Sage
    # Computes the first n rows of the triangle.
    def A071948_triangle(n) :
        D = [0 for i in (0..n+1)]; D[1] = 1
        for i in (4..2*n+3) :
            h = i//2 - 1
            for k in (1..h) : D[k] += D[k-1]
            if i%2 == 1 : print([D[z] for z in (1..h)])
    A071948_triangle(10)  # Peter Luschny, Apr 01 2012

Formula

T(n, n) = A006013(n).
T(n, k) = (n-k+1)binomial(2n+k+1, k)/(n+1) if k<=n.
Let M = the infinite square production matrix
2, 1;
3, 2, 1;
4, 3, 2, 1;
5, 4, 3, 2, 1;
...
The top row of M^n gives reversed terms of n-th row of triangle A071948; with leftmost terms of each row generating A006013 starting (1, 2, 7, 30, 143, ...). - Gary W. Adamson, Jul 07 2011

Extensions

Edited by Emeric Deutsch, Mar 04 2004

A091665 Triangle read by rows: T(n,k) is the number of nonseparable planar maps with 2*n+1 edges and a fixed outer face of 2*k edges which are invariant under a rotation of a 1/2 turn.

Original entry on oeis.org

1, 2, 2, 7, 8, 3, 30, 34, 21, 4, 143, 160, 114, 44, 5, 728, 806, 609, 308, 80, 6, 3876, 4256, 3315, 1908, 715, 132, 7, 21318, 23256, 18444, 11420, 5185, 1482, 203, 8, 120175, 130416, 104652, 67856, 34520, 12600, 2814, 296, 9, 690690, 746350, 603801, 404016, 221300, 93924, 27965, 4984, 414, 10
Offset: 1

Views

Author

Emeric Deutsch, Mar 03 2004

Keywords

Comments

Table II in the Brown reference.

Examples

			Triangle begins:
    1;
    2,   2;
    7,   8,   3;
   30,  34,  21,  4;
  143, 160, 114, 44, 5;
  ...
The T(n,n) = n solutions correspond to a regular polygon with 2n vertices and a single diagonal joining two diametrically opposite vertices. - _Andrew Howroyd_, Mar 29 2021
		

Crossrefs

Column 1 gives A006013, column 2 gives A046649, row sums give A000305.
Same as A046652 but with rows reversed.

Programs

  • Maple
    T := proc(n,k) if k<=n then k*sum((2*j-k+1)*(j-1)!*(3*n-k-j)!/(j-k+1)!/(j-k)!/(2*k-j-1)!/(n-j)!,j=k..min(n,2*k-1))/(2*n-k+1)! else 0 fi end: seq(seq(T(n,k),k=1..n),n=1..11);
  • Mathematica
    t[n_, k_] := If[k <= n, k*Sum[(2*j-k+1)*(j-1)!*(3*n-k-j)!/(j-k+1)!/(j-k)!/(2*k-j-1)!/(n-j)!, {j, k, Min[n, 2*k-1]}]/(2*n-k+1)!, 0]; Table[t[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 20 2014, after Maple *)
  • PARI
    T(n,k) = {k*sum(j=k, min(n, 2*k-1), (2*j-k+1)*(j-1)!*(3*n-k-j)!/((j-k+1)!*(j-k)!*(2*k-j-1)!*(n-j)!))/(2*n-k+1)!}
    for(n=1, 10, for(k=1, n, print1(T(n,k), ", ")); print) \\ Andrew Howroyd, Mar 29 2021

Formula

T(n, k) = k*(Sum_{j=k..min(n, 2*k-1)} (2*j-k+1)*(j-1)!*(3*n-k-j)!/((j-k+1)!*(j-k)!*(2*k-j-1)!*(n-j)!))/(2*n-k+1)! for k<=n and T(n, k)=0 for k>n.

Extensions

Name clarified by Andrew Howroyd, Mar 29 2021

A109971 Inverse of Riordan array (1,x(1-x)^2), A109970.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 7, 4, 1, 0, 30, 18, 6, 1, 0, 143, 88, 33, 8, 1, 0, 728, 455, 182, 52, 10, 1, 0, 3876, 2448, 1020, 320, 75, 12, 1, 0, 21318, 13566, 5814, 1938, 510, 102, 14, 1, 0, 120175, 76912, 33649, 11704, 3325, 760, 133, 16, 1, 0, 690690, 444015, 197340
Offset: 0

Views

Author

Paul Barry, Jul 06 2005

Keywords

Comments

Row sums are A001764. Diagonal sums are A109972. Second column is A006013. Third column is A006629.

Examples

			Rows begin
1;
0,1;
0,2,1;
0,7,4,1;
0,30,18,6,1;
0,143,88,33,8,1;
Production array begins
0, 1
0, 2, 1
0, 3, 2, 1
0, 4, 3, 2, 1
0, 5, 4, 3, 2, 1
0, 6, 5, 4, 3, 2, 1,
0, 7, 6, 5, 4, 3, 2, 1
0, 8, 7, 6, 5, 4, 3, 2, 1
0, 9, 8, 7, 6, 5, 4, 3, 2, 1
... - _Philippe Deléham_, Mar 05 2013
		

Crossrefs

Essentially the same as A092276.

Formula

Number triangle T(0, 0)=1, T(0, k)=0, k>0, T(n, k)=(k/n)*binomial(3n-k-1, n-k) otherwise; Riordan array (1, f) where f(1-f)^2=x.
T(n, k)=sum{j=0..n, ((3j+1)/(2n+j+1))(-1)^(j-k)*C(3n, 2n+j)C(j, k)}; - Paul Barry, Oct 07 2005
T(n,k)=binomial(3n-k,n-k)*2k/(3n-k). (Paul Barry, May 18 2006)

A124305 Riordan array (1, 2*sqrt(3)*sin(arcsin(3*sqrt(3)*x/2)/3)/3).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 3, 0, 3, 0, 1, 0, 0, 7, 0, 4, 0, 1, 0, 12, 0, 12, 0, 5, 0, 1, 0, 0, 30, 0, 18, 0, 6, 0, 1, 0, 55, 0, 55, 0, 25, 0, 7, 0, 1, 0, 0, 143, 0, 88, 0, 33, 0, 8, 0, 1
Offset: 0

Views

Author

Paul Barry, Oct 25 2006

Keywords

Examples

			Triangle begins
  1,
  0,  1,
  0,  0,  1,
  0,  1,  0,  1,
  0,  0,  2,  0,  1,
  0,  3,  0,  3,  0,  1,
  0,  0,  7,  0,  4,  0,  1,
  0, 12,  0, 12,  0,  5,  0,  1
From _Paul Barry_, Sep 28 2009: (Start)
Production matrix is
  0, 1,
  0, 0, 1,
  0, 1, 0, 1,
  0, 0, 1, 0, 1,
  0, 1, 0, 1, 0, 1,
  0, 0, 1, 0, 1, 0, 1,
  0, 1, 0, 1, 0, 1, 0, 1,
  0, 0, 1, 0, 1, 0, 1, 0, 1,
  0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
  0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 (End)
		

Crossrefs

Cf. A047749 (row sums), A098746 (diagonal sums), A124304 (inverse).

Programs

  • Magma
    A124305:= func< n,k | n eq 0 select 1 else (1/2)*(1+(-1)^(n-k))*(k/n)*Binomial(n + Floor((n-k)/2) -1, n-1) >;
    [A124305(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 25 2023
    
  • Mathematica
    A124305[n_, k_]:= If[n==0, 1, (1/2)*(1+(-1)^(n-k))*(k/n)*Binomial[n +(n-k)/2 -1, (n-k)/2]];
    Table[A124305[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 19 2023 *)
  • SageMath
    def A124305(n,k): return 1 if n==0 else ((n-k+1)%2)*k*binomial(n + (n-k)//2 -1, n-1)//n
    flatten([[A124305(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 25 2023

Formula

Sum_{k=0..n} T(n, k) = A047749(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = (1/2)*(1 + (-1)^n)*A098746(n/2).
From G. C. Greubel, Aug 19 2023: (Start)
T(n, k) = (1/2)*(1 + (-1)^(n-k))*(k/n)*binomial(n + (n-k)/2 - 1, (n-k)/2), with T(0, 0) = 1.
T(n, n) = 1.
T(n, n-2) = A001477(n-2).
T(n, n-4) = A055998(n-4).
T(n, n-6) = A111396(n-6).
T(n, 0) = 0^n.
T(n, 1) = ((1-(-1)^n)/2)*A001764(floor((n-1)/2)).
T(n, 2) = ((1+(-1)^n)/2)*A006013(floor((n-2)/2)).
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n * A047749(n). (End)

A143603 Triangle, read by rows, such that the g.f. of column k = G(x)^(2k+1) where G(x) = 1 + x*G(x)^3 is the g.f. of A001764 (ternary trees).

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 12, 12, 5, 1, 55, 55, 25, 7, 1, 273, 273, 130, 42, 9, 1, 1428, 1428, 700, 245, 63, 11, 1, 7752, 7752, 3876, 1428, 408, 88, 13, 1, 43263, 43263, 21945, 8379, 2565, 627, 117, 15, 1, 246675, 246675, 126500, 49588, 15939, 4235, 910, 150, 17, 1
Offset: 1

Views

Author

Paul D. Hanna, Aug 29 2008

Keywords

Comments

From Peter Bala, Aug 07 2014: (Start)
Riordan array (G(x), x*G(x)). Let C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + ... be the o.g.f. of the Catalan numbers A000108. Then C(x*G(x)) = G(x).
This leads to a factorization of this array in the group of Riordan matrices as (1, x*G(x))*(C(x), x*C(x)) = (1 + A110616)*A033184 (here, in the final product, 1 refers to the 1 X 1 identity matrix and + means direct sum - see the Example section). (End)

Examples

			Triangle begins:
1;
1, 1;
3, 3, 1;
12, 12, 5, 1;
55, 55, 25, 7, 1;
273, 273, 130, 42, 9, 1;
1428, 1428, 700, 245, 63, 11, 1;
7752, 7752, 3876, 1428, 408, 88, 13, 1; ...
where g.f. of column k = G(x)^(2k+1) where G(x) = 1 + x*G(x)^3.
Matrix inverse begins:
1;
-1, 1;
0, -3, 1;
0, 3, -5, 1;
0, -1, 10, -7, 1;
0, 0, -10, 21, -9, 1;
0, 0, 5, -35, 36, -11, 1;
0, 0, -1, 35, -84, 55, -13, 1; ...
where g.f. of column k = (1-x)^(2k+1) for k>=0.
From _Peter Bala_, Aug 07 2014: (Start)
Matrix factorization as (1 + A110616)*A033184 begins
/1           \/ 1         \    / 1           \
|0  1        || 1  1       |   | 1  1        |
|0  1 1      || 2  2 1     | = | 3  3  1     |
|0  3 2 1    || 5  5 3 1   |   |12 12  5 1   |
|0 12 7 3 1  ||14 14 9 4 1 |   |55 55 25 7 1 |
(End)
		

Crossrefs

Cf. columns: A001764, A102893, A102594; row sums: A006013. A033184, A110616.

Programs

  • PARI
    {T(n,k)=binomial(3*n-k,n-k)*(2*k+1)/(2*n+1)}

Formula

T(n,k) = C(3n-k,n-k)*(2k+1)/(2n+1) for 0<=k<=n.
Let M = the production matrix:
1, 1
2, 2, 1
3, 3, 2, 1
4, 4, 3, 2, 1
5, 5, 4, 3, 2, 1
...
Top row of M^(n-1) gives n-th row. - Gary W. Adamson, Jul 07 2011

A230547 a(n) = 3*binomial(3*n+9, n)/(n+3).

Original entry on oeis.org

1, 9, 63, 408, 2565, 15939, 98670, 610740, 3786588, 23535820, 146710476, 917263152, 5752004349, 36174046743, 228124619100, 1442387942520, 9142452842985, 58083251802345, 369816259792035, 2359448984037600
Offset: 0

Views

Author

Tim Fulford, Oct 23 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=3, r=9.

Crossrefs

Programs

  • Magma
    [9*Binomial(3*n+9, n)/(3*n+9): n in [0..30]];
  • Mathematica
    Table[9 Binomial[3 n + 9, n]/(3 n + 9), {n, 0, 30}]
  • PARI
    a(n) = 9*binomial(3*n+9,n)/(3*n+9);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(3/9))^9+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, here p=3, r=9.
D-finite with recurrence 2*n*(2*n+9)*(n+4)*a(n) -3*(3*n+7)*(n+2)*(3*n+8)*a(n-1)=0. - R. J. Mathar, Nov 22 2024
Previous Showing 61-70 of 137 results. Next