cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 160 results. Next

A307249 Number of simplicial complexes with n nodes.

Original entry on oeis.org

1, 1, 2, 9, 114, 6894, 7785062, 2414627396434, 56130437209370320359966, 286386577668298410623295216696338374471993
Offset: 0

Views

Author

Gus Wiseman, Mar 31 2019

Keywords

Comments

Except for a(0) = 1, this is also the number of antichains of nonempty sets covering n vertices (A006126). There are two antichains of size zero, namely {} and {{}}, while there is only one simplicial complex, namely {}. The unlabeled case is A261005. The non-covering case is A014466.

Examples

			Maximal simplices of the a(0) = 1 through a(3) = 9 simplicial complexes:
  {}    {{1}}  {{12}}    {{123}}
               {{1}{2}}  {{1}{23}}
                         {{2}{13}}
                         {{3}{12}}
                         {{12}{13}}
                         {{12}{23}}
                         {{13}{23}}
                         {{1}{2}{3}}
                         {{12}{13}{23}}
		

Crossrefs

Programs

  • Mathematica
    nn=5;
    stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n],{2,n}],SubsetQ]],{n,0,nn}]

Formula

Inverse binomial transform of A014466.

Extensions

a(9) from Dmitry I. Ignatov, Nov 25 2023

A318099 Number of non-isomorphic weight-n antichains of (not necessarily distinct) multisets whose dual is also an antichain of (not necessarily distinct) multisets.

Original entry on oeis.org

1, 1, 4, 7, 19, 32, 81, 142, 337, 659, 1564
Offset: 0

Views

Author

Gus Wiseman, Sep 25 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(3) = 7 antichains:
1: {{1}}
2: {{1,1}}
   {{1,2}}
   {{1},{1}}
   {{1},{2}}
3: {{1,1,1}}
   {{1,2,3}}
   {{1},{2,2}}
   {{1},{2,3}}
   {{1},{1},{1}}
   {{1},{2},{2}}
   {{1},{2},{3}}
		

Crossrefs

A326754 BII-numbers of set-systems covering an initial interval of positive integers.

Original entry on oeis.org

0, 1, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 26, 27, 28, 29, 30, 31, 33, 35, 36, 37, 38, 39, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78
Offset: 1

Views

Author

Gus Wiseman, Jul 23 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			The sequence of all covering set-systems together with their BII-numbers begins:
   0: {}
   1: {{1}}
   3: {{1},{2}}
   4: {{1,2}}
   5: {{1},{1,2}}
   6: {{2},{1,2}}
   7: {{1},{2},{1,2}}
  11: {{1},{2},{3}}
  12: {{1,2},{3}}
  13: {{1},{1,2},{3}}
  14: {{2},{1,2},{3}}
  15: {{1},{2},{1,2},{3}}
  18: {{2},{1,3}}
  19: {{1},{2},{1,3}}
  20: {{1,2},{1,3}}
  21: {{1},{1,2},{1,3}}
  22: {{2},{1,2},{1,3}}
  23: {{1},{2},{1,2},{1,3}}
  26: {{2},{3},{1,3}}
  27: {{1},{2},{3},{1,3}}
  28: {{1,2},{3},{1,3}}
  29: {{1},{1,2},{3},{1,3}}
  30: {{2},{1,2},{3},{1,3}}
		

Crossrefs

Other BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326752 (hypertrees).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    Select[Range[0,100],normQ[Join@@bpe/@bpe[#]]&]
  • Python
    from itertools import chain, count, islice
    def bin_i(n): #binary indices
        return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
    def a_gen():
        for n in count(0):
            s = set(i for i in chain.from_iterable([bin_i(k) for k in bin_i(n)]))
            y = len(s)
            if sum(s) == (y*(y+1))//2:
                yield n
    A326754_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Jun 20 2024

A006602 a(n) is the number of hierarchical models on n unlabeled factors or variables with linear terms forced.

Original entry on oeis.org

2, 1, 2, 5, 20, 180, 16143, 489996795, 1392195548399980210, 789204635842035039135545297410259322
Offset: 0

Views

Author

Keywords

Comments

Also number of pure (= irreducible) group-testing histories of n items - A. Boneh, Mar 31 2000
Also number of antichain covers of an unlabeled n-set, so a(n) equals first differences of A003182. - Vladeta Jovovic, Goran Kilibarda, Aug 18 2000
Also number of inequivalent (under permutation of variables) nondegenerate monotone Boolean functions of n variables. We say h and g (functions of n variables) are equivalent if there exists a permutation p of S_n such that hp=g. E.g., a(3)=5 because xyz, xy+xz+yz, x+yz+xyz, xy+xz+xyz, x+y+z+xy+xz+yz+xyz are 5 inequivalent nondegenerate monotone Boolean functions that generate (by permutation of variables) the other 4. For example, y+xz+xyz can be obtained from x+yz+xyz by exchanging x and y. - Alan Veliz-Cuba (alanavc(AT)vt.edu), Jun 16 2006
The non-spanning/covering case is A003182. The labeled case is A006126. - Gus Wiseman, Feb 20 2019

Examples

			From _Gus Wiseman_, Feb 20 2019: (Start)
Non-isomorphic representatives of the a(0) = 2 through a(4) = 20 antichains:
  {}    {{1}}  {{12}}    {{123}}         {{1234}}
  {{}}         {{1}{2}}  {{1}{23}}       {{1}{234}}
                         {{13}{23}}      {{12}{34}}
                         {{1}{2}{3}}     {{14}{234}}
                         {{12}{13}{23}}  {{1}{2}{34}}
                                         {{134}{234}}
                                         {{1}{24}{34}}
                                         {{1}{2}{3}{4}}
                                         {{13}{24}{34}}
                                         {{14}{24}{34}}
                                         {{13}{14}{234}}
                                         {{12}{134}{234}}
                                         {{1}{23}{24}{34}}
                                         {{124}{134}{234}}
                                         {{12}{13}{24}{34}}
                                         {{14}{23}{24}{34}}
                                         {{12}{13}{14}{234}}
                                         {{123}{124}{134}{234}}
                                         {{13}{14}{23}{24}{34}}
                                         {{12}{13}{14}{23}{24}{34}}
(End)
		

References

  • Y. M. M. Bishop, S. E. Fienberg and P. W. Holland, Discrete Multivariate Analysis. MIT Press, 1975, p. 34. [In part (e), the Hierarchy Principle for log-linear models is defined. It essentially says that if a higher-order parameter term is included in the log-linear model, then all the lower-order parameter terms should also be included. - Petros Hadjicostas, Apr 10 2020]
  • V. Jovovic and G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation.
  • A. A. Mcintosh, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = A007411(n) + 1.
First differences of A003182. - Gus Wiseman, Feb 23 2019

Extensions

a(6) from A. Boneh, 32 Hantkeh St., Haifa 34608, Israel, Mar 31 2000
Entry revised by N. J. A. Sloane, Jul 23 2006
a(7) from A007411 and A003182. - N. J. A. Sloane, Aug 13 2015
Named edited by Petros Hadjicostas, Apr 08 2020
a(8) from A003182. - Bartlomiej Pawelski, Nov 27 2022
a(9) from A007411. - Dmitry I. Ignatov, Nov 27 2023

A319637 Number of non-isomorphic T_0-covers of n vertices by distinct sets.

Original entry on oeis.org

1, 1, 3, 29, 1885, 18658259
Offset: 0

Views

Author

Gus Wiseman, Sep 25 2018

Keywords

Comments

The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}. The T_0 condition means the dual is strict (no repeated elements).

Examples

			Non-isomorphic representatives of the a(3) = 29 covers:
   {{1,3},{2,3}}
   {{1},{2},{3}}
   {{1},{3},{2,3}}
   {{2},{3},{1,2,3}}
   {{2},{1,3},{2,3}}
   {{3},{1,3},{2,3}}
   {{3},{2,3},{1,2,3}}
   {{1,2},{1,3},{2,3}}
   {{1},{2},{3},{2,3}}
   {{1,3},{2,3},{1,2,3}}
   {{1},{2},{3},{1,2,3}}
   {{1},{2},{1,3},{2,3}}
   {{2},{3},{1,3},{2,3}}
   {{1},{3},{2,3},{1,2,3}}
   {{2},{3},{2,3},{1,2,3}}
   {{3},{1,2},{1,3},{2,3}}
   {{2},{1,3},{2,3},{1,2,3}}
   {{3},{1,3},{2,3},{1,2,3}}
   {{1},{2},{3},{1,3},{2,3}}
   {{1,2},{1,3},{2,3},{1,2,3}}
   {{1},{2},{3},{2,3},{1,2,3}}
   {{2},{3},{1,2},{1,3},{2,3}}
   {{1},{2},{1,3},{2,3},{1,2,3}}
   {{2},{3},{1,3},{2,3},{1,2,3}}
   {{3},{1,2},{1,3},{2,3},{1,2,3}}
   {{1},{2},{3},{1,2},{1,3},{2,3}}
   {{1},{2},{3},{1,3},{2,3},{1,2,3}}
   {{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
   {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Extensions

a(5) from Max Alekseyev, Jul 13 2022

A303837 Number of z-trees with least common multiple n > 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 1, 4, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 10, 1, 1, 2, 1, 1, 4, 1, 2, 1, 4, 1, 6, 1, 1, 2, 2, 1, 4, 1, 4, 1, 1, 1, 10, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 19 2018

Keywords

Comments

Given a finite set S of positive integers greater than 1, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that have a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph. The clutter density of S is defined to be Sum_{s in S} (omega(s) - 1) - omega(LCM(S)), where omega = A001221 and LCM is least common multiple. Then a z-tree is a finite connected set of pairwise indivisible positive integers greater than 1 with clutter density -1.
This is a generalization to multiset systems of the usual definition of hypertree (viz. connected hypergraph F such that two distinct hyperedges of F intersect in at most a common vertex and such that every cycle of F is contained in a hyperedge).
If n is squarefree with k prime factors, then a(n) = A030019(k).

Examples

			The a(72) = 6 z-trees together with the corresponding multiset systems (see A112798, A302242) are the following.
      (72): {{1,1,1,2,2}}
    (8,18): {{1,1,1},{1,2,2}}
    (8,36): {{1,1,1},{1,1,2,2}}
    (9,24): {{2,2},{1,1,1,2}}
   (6,8,9): {{1,2},{1,1,1},{2,2}}
  (8,9,12): {{1,1,1},{2,2},{1,1,2}}
The a(60) = 10 z-trees together with the corresponding multiset systems are the following.
       (60): {{1,1,2,3}}
     (4,30): {{1,1},{1,2,3}}
     (6,20): {{1,2},{1,1,3}}
    (10,12): {{1,3},{1,1,2}}
    (12,15): {{1,1,2},{2,3}}
    (12,20): {{1,1,2},{1,1,3}}
    (15,20): {{2,3},{1,1,3}}
   (4,6,10): {{1,1},{1,2},{1,3}}
   (4,6,15): {{1,1},{1,2},{2,3}}
  (4,10,15): {{1,1},{1,3},{2,3}}
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
    Table[Length[Select[Rest[Subsets[Rest[Divisors[n]]]],And[zensity[#]==-1,zsm[#]=={n},Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={}]&]],{n,2,50}]

A001206 Number of self-dual monotone Boolean functions of n variables.

Original entry on oeis.org

0, 1, 2, 4, 12, 81, 2646, 1422564, 229809982112, 423295099074735261880
Offset: 0

Views

Author

Keywords

Comments

Sometimes called Hosten-Morris numbers (or HM numbers).
Also the number of simplicial complexes on the set {1, ..., n-1} such that no pair of faces covers all of {1, ..., n-1}. [Miller-Sturmfels] - N. J. A. Sloane, Feb 18 2008
Also the maximal number of generators of a neighborly monomial ideal in n variables. [Miller-Sturmfels]. - N. J. A. Sloane, Feb 18 2008
Also the number of intersecting antichains on a labeled (n-1)-set or (n-1)-variable Boolean functions in the Post class F(7,2). Cf. A059090. - Vladeta Jovovic, Goran Kilibarda, Dec 28 2000
Also the number of nondominated coteries on n members. - Don Knuth, Sep 01 2005
The number of maximal families of intersecting subsets of an n-element set. - Bridget Tenner, Nov 16 2006
Rivière gives a(n) for n <= 5. - N. J. A. Sloane, May 12 2012

Examples

			a(2) = 1 + 1 = 2;
a(3) = 1 + 3 = 4;
a(4) = 1 + 7 + 3 + 1 = 12;
a(5) = 1 + 15 + 30 + 30 + 5 = 81;
a(6) = 1 + 31 + 195 + 605 + 780 + 543 + 300 + 135 + 45 + 10 + 1 = 2646;
a(7) = 1 + 63 + 1050 + 9030 + 41545 + 118629 + 233821 + 329205 + 327915 + 224280 + 100716 + 29337 + 5950 + 910 + 105 + 1 = 1422564.
Cf. A059090.
From _Gus Wiseman_, Jul 03 2019: (Start)
The a(1) = 1 through a(4) = 12 intersecting antichains of nonempty sets (see Jovovic and Kilibarda's comment):
  {}  {}     {}       {}
      {{1}}  {{1}}    {{1}}
             {{2}}    {{2}}
             {{1,2}}  {{3}}
                      {{1,2}}
                      {{1,3}}
                      {{2,3}}
                      {{1,2,3}}
                      {{1,2},{1,3}}
                      {{1,2},{2,3}}
                      {{1,3},{2,3}}
                      {{1,2},{1,3},{2,3}}
(End)
		

References

  • Martin Aigner and Günter M. Ziegler, Proofs from THE BOOK, Third Edition, Springer-Verlag, 2004. See chapter 22.
  • V. Jovovic and G. Kilibarda, The number of n-variable Boolean functions in the Post class F(7,2), Belgrade, 2001, in preparation.
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
  • W. F. Lunnon, The IU function: the size of a free distributive lattice, pp. 173-181 of D. J. A. Welsh, editor, Combinatorial Mathematics and Its Applications. Academic Press, NY, 1971.
  • Charles F. Mills and W. M. Mills, The calculation of λ(8), preprint, 1979. Gives a(8).
  • E. Miller and B. Sturmfels, Combinatorial Commutative Algebra, Springer, 2005.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The case with empty edges allowed is A326372.
The maximal case is A007363, or A326363 with empty edges allowed.
The case with empty intersection is A326366.
The inverse binomial transform is the covering case A305844.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[stableSets[Subsets[Range[n],{1,n}],Or[Intersection[#1,#2]=={},SubsetQ[#1,#2]]&]],{n,0,5}] (* Gus Wiseman, Jul 03 2019 *)

Formula

a(n+1) = Sum_{m=0..A037952(n)} A059090(n, m).
For n > 0, a(n) = A326372(n - 1) - 1. - Gus Wiseman, Jul 03 2019

Extensions

a(8) due to C. F. Mills & W. H. Mills, 1979
a(8) from Daniel E. Loeb, Jan 04 1996
a(8) confirmed by Don Knuth, Feb 08 2008
a(9) from Andries E. Brouwer, Aug 25 2012

A305000 Number of labeled antichains of finite sets spanning some subset of {1,...,n} with singleton edges allowed.

Original entry on oeis.org

1, 2, 8, 72, 1824, 220608, 498243968, 309072306743552, 14369391925598802012151296, 146629927766168786239127150948525247729660416
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Comments

Only the non-singleton edges are required to form an antichain.
Number of non-degenerate unate Boolean functions of n or fewer variables. - Aniruddha Biswas, May 11 2024

Examples

			The a(2) = 8 antichains:
  {}
  {{1}}
  {{2}}
  {{1,2}}
  {{1},{2}}
  {{1},{1,2}}
  {{2},{1,2}}
  {{1},{2},{1,2}}
		

Crossrefs

Formula

Binomial transform of A304999.
Inverse binomial transform of A245079. - Aniruddha Biswas, May 11 2024

Extensions

a(5)-a(8) from Gus Wiseman, May 31 2018
a(9) from Aniruddha Biswas, May 11 2024

A305001 Number of labeled antichains of finite sets spanning n vertices without singletons.

Original entry on oeis.org

1, 0, 1, 5, 87, 6398, 7745253, 2414573042063, 56130437190053518791691, 286386577668298410118121281898931424413687
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Comments

From Gus Wiseman, Jul 03 2019: (Start)
Also the number of antichains covering n vertices and having empty intersection (meaning there is no vertex in common to all the edges). For example, the a(3) = 5 antichains are:
{{3},{1,2}}
{{2},{1,3}}
{{1},{2,3}}
{{1},{2},{3}}
{{1,2},{1,3},{2,3}}
(End)

Examples

			The a(3) = 5 antichains:
  {{1,2,3}}
  {{1,2},{1,3}}
  {{1,2},{2,3}}
  {{1,3},{2,3}}
  {{1,2},{1,3},{2,3}}
		

Crossrefs

The binomial transform is the non-covering case A307249.
The second binomial transform is A014466.

Programs

  • Mathematica
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],And[Union@@#==Range[n],#=={}||Intersection@@#=={}]&]],{n,0,5}] (* Gus Wiseman, Jul 03 2019 *)

Extensions

a(9) from A307249 - Dmitry I. Ignatov, Nov 27 2023

A304118 Number of z-blobs with least common multiple n > 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 19 2018

Keywords

Comments

Given a finite set S of positive integers greater than 1, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that have a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph. The clutter density of S is defined to be Sum_{s in S} (omega(s) - 1) - omega(LCM(S)), where omega = A001221 and LCM is least common multiple. A z-blob is a finite connected set S of pairwise indivisible positive integers greater than 1 such that no cap of S with at least two edges has clutter density -1.
If n is squarefree with k prime factors, then a(n) = A275307(k).

Examples

			The a(60) = 7 z-blobs together with the corresponding multiset systems (see A112798, A302242) are the following.
        (60): {{1,1,2,3}}
     (12,30): {{1,1,2},{1,2,3}}
     (20,30): {{1,1,3},{1,2,3}}
   (6,15,20): {{1,2},{2,3},{1,1,3}}
  (10,12,15): {{1,3},{1,1,2},{2,3}}
  (12,15,20): {{1,1,2},{2,3},{1,1,3}}
  (12,20,30): {{1,1,2},{1,1,3},{1,2,3}}
The a(120) = 14 z-blobs together with the corresponding multiset systems are the following.
       (120): {{1,1,1,2,3}}
     (24,30): {{1,1,1,2},{1,2,3}}
     (24,60): {{1,1,1,2},{1,1,2,3}}
     (30,40): {{1,2,3},{1,1,1,3}}
     (40,60): {{1,1,1,3},{1,1,2,3}}
   (6,15,40): {{1,2},{2,3},{1,1,1,3}}
  (10,15,24): {{1,3},{2,3},{1,1,1,2}}
  (12,15,40): {{1,1,2},{2,3},{1,1,1,3}}
  (12,30,40): {{1,1,2},{1,2,3},{1,1,1,3}}
  (15,20,24): {{2,3},{1,1,3},{1,1,1,2}}
  (15,24,40): {{2,3},{1,1,1,2},{1,1,1,3}}
  (20,24,30): {{1,1,3},{1,1,1,2},{1,2,3}}
  (24,30,40): {{1,1,1,2},{1,2,3},{1,1,1,3}}
  (24,40,60): {{1,1,1,2},{1,1,1,3},{1,1,2,3}}
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Union[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
    zreeQ[s_]:=And[Length[s]>=2,zensity[s]==-1];
    zlobQ[s_]:=Apply[And,Composition[Not,zreeQ]/@Apply[LCM,zptns[s],{2}]];
    zswell[s_]:=Union[LCM@@@Select[Subsets[s],Length[zsm[#]]==1&]];
    zkernels[s_]:=Table[Select[s,Divisible[w,#]&],{w,zswell[s]}];
    zptns[s_]:=Select[stableSets[zkernels[s],Length[Intersection[#1,#2]]>0&],Union@@#==s&];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    Table[If[n==1,0,Length[Select[Rest[Subsets[Rest[Divisors[n]]]],And[zsm[#]=={n},Select[Tuples[#,2],UnsameQ@@#&&Divisible@@#&]=={},zlobQ[#]]&]]],{n,100}]
Previous Showing 21-30 of 160 results. Next