cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 46 results. Next

A161007 a(n+1) = 2*a(n) + 16*a(n-1), a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 2, 20, 72, 464, 2080, 11584, 56448, 298240, 1499648, 7771136, 39536640, 203411456, 1039409152, 5333401600, 27297349632, 139929124864, 716615843840, 3672097685504, 18810048872448, 96373660712960, 493708103385088, 2529394778177536, 12958119210516480
Offset: 0

Views

Author

Sture Sjöstedt, Jun 02 2009

Keywords

Crossrefs

Cf. A006131, A010473 (sqrt(17)).

Programs

  • Magma
    [n le 2 select n-1 else 2*(Self(n-1) +8*Self(n-2)): n in [1..41]]; // G. C. Greubel, Oct 15 2022
    
  • Mathematica
    LinearRecurrence[{2, 16}, {0, 1}, 50] (* T. D. Noe, Nov 07 2011 *)
  • PARI
    concat(0, Vec(-x/(16*x^2+2*x-1) + O(x^40))) \\ Colin Barker, Jul 01 2015
    
  • SageMath
    A161007=BinaryRecurrenceSequence(2,16,0,1)
    [A161007(n) for n in range(41)] # G. C. Greubel, Oct 15 2022

Formula

a(n) = ((1+sqrt(17))^n - (1-sqrt(17))^n)/(2*sqrt(17)).
Limit_{n -> oo} a(n+1)/a(n) = 1 + sqrt(17).
G.f.: x / (1 - 2*x - 16*x^2). - Colin Barker, Jul 01 2015
a(n) = 2^(n-1)*A006131(n-1). - R. J. Mathar, Mar 08 2021
a(n) = (4*i)^n*ChebyshevU(n, -i/4). - G. C. Greubel, Oct 15 2022

A193376 T(n,k) = number of ways to place any number of 2 X 1 tiles of k distinguishable colors into an n X 1 grid; array read by descending antidiagonals, with n, k >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 5, 5, 1, 5, 7, 11, 8, 1, 6, 9, 19, 21, 13, 1, 7, 11, 29, 40, 43, 21, 1, 8, 13, 41, 65, 97, 85, 34, 1, 9, 15, 55, 96, 181, 217, 171, 55, 1, 10, 17, 71, 133, 301, 441, 508, 341, 89, 1, 11, 19, 89, 176, 463, 781, 1165, 1159, 683, 144, 1, 12, 21, 109, 225, 673
Offset: 1

Views

Author

R. H. Hardin, Jul 24 2011

Keywords

Comments

Transposed variant of A083856. - R. J. Mathar, Aug 23 2011
As to the sequences by columns beginning (1, N, ...), let m = (N-1). The g.f. for the sequence (1, N, ...) is 1/(1 - x - m*x^2). Alternatively, the corresponding matrix generator is [[1,1], [m,0]]. Another equivalency is simply: The sequence beginning (1, N, ...) is the INVERT transform of (1, m, 0, 0, 0, ...). Convergents to the sequences a(n)/a(n-1) are (1 + sqrt(4*m+1))/2. - Gary W. Adamson, Feb 25 2014

Examples

			Array T(n,k) (with rows n >= 1 and column k >= 1) begins as follows:
  ..1...1....1....1.....1.....1.....1......1......1......1......1......1...
  ..2...3....4....5.....6.....7.....8......9.....10.....11.....12.....13...
  ..3...5....7....9....11....13....15.....17.....19.....21.....23.....25...
  ..5..11...19...29....41....55....71.....89....109....131....155....181...
  ..8..21...40...65....96...133...176....225....280....341....408....481...
  .13..43...97..181...301...463...673....937...1261...1651...2113...2653...
  .21..85..217..441...781..1261..1905...2737...3781...5061...6601...8425...
  .34.171..508.1165..2286..4039..6616..10233..15130..21571..29844..40261...
  .55.341.1159.2929..6191.11605.19951..32129..49159..72181.102455.141361...
  .89.683.2683.7589.17621.35839.66263.113993.185329.287891.430739.624493...
  ...
Some solutions for n = 5 and k = 3 with colors = 1, 2, 3 and empty = 0:
..0....2....3....2....0....1....0....0....2....0....0....2....3....0....0....0
..0....2....3....2....2....1....2....3....2....1....0....2....3....1....1....1
..1....0....0....0....2....0....2....3....2....1....0....1....0....1....1....1
..1....2....2....0....3....2....2....3....2....0....3....1....3....3....2....1
..0....2....2....0....3....2....2....3....0....0....3....0....3....3....2....1
		

Crossrefs

Column 1 is A000045(n+1), column 2 is A001045(n+1), column 3 is A006130, column 4 is A006131, column 5 is A015440, column 6 is A015441(n+1), column 7 is A015442(n+1), column 8 is A015443, column 9 is A015445, column 10 is A015446, column 11 is A015447, and column 12 is A053404,
Row 2 is A000027(n+1), row 3 is A004273(n+1), row 4 is A028387, row 5 is A000567(n+1), and row 6 is A106734(n+2).
Diagonal is A171180, superdiagonal 1 is A083859(n+1), and superdiagonal 2 is A083860(n+1).

Programs

  • Maple
    T:= proc(n,k) option remember; `if`(n<0, 0,
          `if`(n<2 or k=0, 1, k*T(n-2, k) +T(n-1, k)))
        end;
    seq(seq(T(n, d+1-n), n=1..d), d=1..12); # Alois P. Heinz, Jul 29 2011
  • Mathematica
    T[n_, k_] := T[n, k] = If[n < 0, 0, If[n < 2 || k == 0, 1, k*T[n-2, k]+T[n-1, k]]]; Table[Table[T[n, d+1-n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Mar 04 2014, after Alois P. Heinz *)

Formula

With z X 1 tiles of k colors on an n X 1 grid (with n >= z), either there is a tile (of any of the k colors) on the first spot, followed by any configuration on the remaining (n-z) X 1 grid, or the first spot is vacant, followed by any configuration on the remaining (n-1) X 1. Thus, T(n,k) = T(n-1,k) + k*T(n-z,k), with T(n,k) = 1 for n = 0, 1, ..., z-1.
The solution is T(n,k) = Sum_r r^(-n-1)/(1 + z*k*r^(z-1)), where the sum is over the roots r of the polynomial k*x^z + x - 1.
For z = 2, T(n,k) = ((2*k / (sqrt(1 + 4*k) - 1))^(n+1) - (-2*k/(sqrt(1 + 4*k) + 1))^(n+1)) / sqrt(1 + 4*k).
T(n,k) = Sum_{s=0..[n/2]} binomial(n-s,s) * k^s.
For z X 1 tiles, T(n,k,z) = Sum_{s = 0..[n/z]} binomial(n-(z-1)*s, s) * k^s. - R. H. Hardin, Jul 31 2011

Extensions

Formula and proof from Robert Israel in the Sequence Fans mailing list.

A052923 Expansion of (1-x)/(1 - x - 4*x^2).

Original entry on oeis.org

1, 0, 4, 4, 20, 36, 116, 260, 724, 1764, 4660, 11716, 30356, 77220, 198644, 507524, 1302100, 3332196, 8540596, 21869380, 56031764, 143509284, 367636340, 941673476, 2412218836, 6178912740, 15827788084, 40543439044, 103854591380
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

First differences of A006131.
This sequence {a(n)} appears in the formula for powers of c = (1 + sqrt(17))/2 = A222132, the fundamental (integer) algebraic number of Q(sqrt(17)): c^n = a(n) + A006131(n-1)*c. This is also valid for positive powers of 1/c = (-1 + sqrt(17)) /8. See the formula below and in A006131 in terms of Chebyshev or Fibonacci polynomials. - Wolfdieter Lang, Nov 27 2023

Crossrefs

Programs

  • GAP
    a:=[1,0];; for n in [3..30] do a[n]:=a[n-1]+4*a[n-2]; od; a; # G. C. Greubel, Oct 16 2019
    a := n -> -(2*I)^n*ChebyshevU(n-2, -I/4):
    seq(simplify(a(n)), n = 0..28);  # Peter Luschny, Dec 03 2023
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)/(1 -x -4*x^2) )); // G. C. Greubel, Oct 16 2019
    
  • Maple
    spec := [S,{S=Sequence(Prod(Sequence(Z),Z,Union(Z,Z,Z,Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
    seq(coeff(series((1-x)/(1 -x -4*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 16 2019
  • Mathematica
    LinearRecurrence[{1,4}, {1,0}, 30] (* G. C. Greubel, Oct 16 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x)/(1 -x -4*x^2)) \\ G. C. Greubel, Oct 16 2019
    
  • Sage
    def A052923_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-x)/(1 -x -4*x^2)).list()
    A052923_list(30) # G. C. Greubel, Oct 16 2019
    

Formula

G.f.: (1-x)/(1 - x - 4*x^2).
a(n) = a(n-1) + 4*a(n-2), with a(0)=1, a(1)=0.
a(n) = Sum_{alpha=RootOf(-1+z+4*z^2)} (1/17)*(-1+9*alpha)*alpha^(-1-n).
If p[1]=0, and p[i]=4, ( i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, Apr 29 2010
From Wolfdieter Lang, Nov 27 2023: (Start)
a(n) = 4*A006131(n-2), with A006131(-2) = 1/4 and A006131(-1) = 0.
a(n) = -(-2*i)^n*S(n-2, i/2), with i = sqrt(-1), and the S-Chebyshev polynomials (see A049310). S(-n, x) = -S(n-2, x). The Fibonacci polynomials are F(n, x) = (-i)^(n-1)*S(n-1, i*x). (End)

Extensions

More terms from James Sellers, Jun 06 2000

A350470 Array read by ascending antidiagonals. T(n, k) = J(k, n) where J are the Jacobsthal polynomials.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 5, 1, 1, 1, 7, 9, 11, 1, 1, 1, 9, 13, 29, 21, 1, 1, 1, 11, 17, 55, 65, 43, 1, 1, 1, 13, 21, 89, 133, 181, 85, 1, 1, 1, 15, 25, 131, 225, 463, 441, 171, 1, 1, 1, 17, 29, 181, 341, 937, 1261, 1165, 341, 1
Offset: 0

Views

Author

Peter Luschny, Mar 19 2022

Keywords

Examples

			Array starts:
n\k 0, 1,  2,  3,   4,    5,    6,     7,      8,      9, ...
---------------------------------------------------------------------
[0] 1, 1,  1,  1,   1,    1,    1,     1,      1,      1, ... A000012
[1] 1, 1,  3,  5,  11,   21,   43,    85,    171,    341, ... A001045
[2] 1, 1,  5,  9,  29,   65,  181,   441,   1165,   2929, ... A006131
[3] 1, 1,  7, 13,  55,  133,  463,  1261,   4039,  11605, ... A015441
[4] 1, 1,  9, 17,  89,  225,  937,  2737,  10233,  32129, ... A015443
[5] 1, 1, 11, 21, 131,  341, 1651,  5061,  21571,  72181, ... A015446
[6] 1, 1, 13, 25, 181,  481, 2653,  8425,  40261, 141361, ... A053404
[7] 1, 1, 15, 29, 239,  645, 3991, 13021,  68895, 251189, ... A350468
[8] 1, 1, 17, 33, 305,  833, 5713, 19041, 110449, 415105, ... A168579
[9] 1, 1, 19, 37, 379, 1045, 7867, 26677, 168283, 648469, ... A350469
      A005408 | A082108 |
           A016813   A014641
		

Crossrefs

Cf. A350467 (main diagonal), A352361 (Fibonacci polynomials), A352362 (Lucas polynomials).

Programs

  • Maple
    J := (n, x) -> add(2^k*binomial(n - k, k)*x^k, k = 0..n):
    seq(seq(J(k, n-k), k = 0..n), n = 0..10);
  • Mathematica
    T[n_, k_] := Hypergeometric2F1[(1 - k)/2, -k/2, -k, -8 n];
    Table[T[n, k], {n, 0, 9}, {k, 0, 9}] // TableForm
    (* or *)
    T[n_, k_] := With[{s = Sqrt[8*n+1]}, ((1+s)^(k+1) - (1-s)^(k+1)) / (2^(k+1)*s)];
    Table[Simplify[T[n, k]], {n, 0, 9}, {k, 0, 9}] // TableForm
  • PARI
    T(n, k) = ([1, 2; k, 0]^n)[1, 1] ;
    export(T)
    for(k = 0, 9, print(parvector(10, n, T(n - 1, k))))

Formula

T(n, k) = Sum_{j=0..k} binomial(k - j, j)*(2*n)^j.
T(n, k) = ((1+s)^(k+1) - (1-s)^(k+1)) / (2^(k+1)*s) where s = sqrt(8*n + 1).
T(n, k) = [x^k] (1 / (1 - x - 2*n*x^2)).
T(n, k) = hypergeom([1/2 - k/2, -k/2], [-k], -8*n).

A189800 a(n) = 6*a(n-1) + 8*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 6, 44, 312, 2224, 15840, 112832, 803712, 5724928, 40779264, 290475008, 2069084160, 14738305024, 104982503424, 747801460736, 5326668791808, 37942424436736, 270267896954880, 1925146777223168, 13713023838978048, 97679317251653632, 695780094221746176
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    LinearRecurrence[{6, 8}, {0, 1}, 50]
    CoefficientList[Series[-(x/(-1+6 x+8 x^2)),{x,0,50}],x] (* Harvey P. Dale, Jul 26 2011 *)
  • PARI
    a(n)=([0,1; 8,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f.: x/(1 - 2*x*(3+4*x)). - Harvey P. Dale, Jul 26 2011

A060959 Table by antidiagonals of generalized Fibonacci numbers: T(n,k) = T(n,k-1) + n*T(n,k-2) with T(n,0)=0 and T(n,1)=1.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 3, 3, 1, 1, 0, 1, 5, 5, 4, 1, 1, 0, 1, 8, 11, 7, 5, 1, 1, 0, 1, 13, 21, 19, 9, 6, 1, 1, 0, 1, 21, 43, 40, 29, 11, 7, 1, 1, 0, 1, 34, 85, 97, 65, 41, 13, 8, 1, 1, 0, 1, 55, 171, 217, 181, 96, 55, 15, 9, 1, 1, 0, 1, 89, 341, 508, 441, 301, 133, 71, 17, 10, 1, 1, 0
Offset: 0

Views

Author

Henry Bottomley, May 10 2001

Keywords

Examples

			Square array begins as:
  0, 1, 1, 1,  1,  1,  1, ...
  0, 1, 1, 2,  3,  5,  8, ...
  0, 1, 1, 3,  5, 11, 21, ...
  0, 1, 1, 4,  7, 19, 40, ...
  0, 1, 1, 5,  9, 29, 65, ...
  0, 1, 1, 6, 11, 41, 96, ...
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> (((1+Sqrt(1+4*k))/2)^(n-k) - ((1-Sqrt(1+4*k))/2)^(n-k))/Sqrt(1+4*k) ))); # G. C. Greubel, Jan 15 2020
  • Magma
    [Round( (((1+Sqrt(1+4*k))/2)^(n-k) - ((1-Sqrt(1+4*k))/2)^(n-k) )/Sqrt(1+4*k) ): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 15 2020
    
  • Maple
    seq(seq( round((((1+sqrt(1+4*k))/2)^(n-k) - ((1-sqrt(1+4*k))/2)^(n-k) )/sqrt(1+4*k)), k=0..n), n=0..12); # G. C. Greubel, Jan 15 2020
  • Mathematica
    T[n_, k_]:= If[n==k==0, 0, Round[(((1+Sqrt[1+4n])/2)^k - ((1-Sqrt[1+4n])/2)^k)/Sqrt[1+4n]]]; Table[T[k, n-k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 15 2020 *)
  • PARI
    T(n,k) = ( ((1+sqrt(1+4*n))/2)^k - ((1-sqrt(1+4*n))/2)^k )/sqrt(1+4*n);
    for(n=0,12, for(k=0,n, print1( round(T(k,n-k)), ", "))) \\ G. C. Greubel, Jan 15 2020
    
  • Sage
    [[ round( (((1+sqrt(1+4*k))/2)^(n-k) - ((1-sqrt(1+4*k))/2)^(n-k) )/sqrt(1+4*k) ) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 15 2020
    

Formula

T(n, k) = ( ((1+sqrt(1+4*n))/2)^k - ((1-sqrt(1+4*n))/2)^k )/sqrt(1+4*n).

A026583 a(n) = Sum{T(i,j)}, 0<=j<=i, 0<=i<=2n, T given by A026568.

Original entry on oeis.org

1, 4, 11, 30, 77, 200, 511, 1314, 3361, 8620, 22067, 56550, 144821, 371024, 950311, 2434410, 6235657, 15973300, 40915931, 104809134, 268472861, 687709400, 1761600847, 4512438450, 11558841841, 29608595644, 75843963011
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A006131, A026581 (first differences).

Programs

  • Mathematica
    LinearRecurrence[{2,3,-4},{1,4,11},40] (* Harvey P. Dale, Apr 03 2024 *)

Formula

G.f.: (1+2x)/[(1-x)(1-x-4x^2)]. - Ralf Stephan, Feb 04 2004 (follows from first comment in A026581)

A097705 a(n) = 4*a(n-1) + 17*a(n-2), a(1)=1, a(2)=4.

Original entry on oeis.org

1, 4, 33, 200, 1361, 8844, 58513, 384400, 2532321, 16664084, 109705793, 722112600, 4753448881, 31289709724, 205967469873, 1355794944800, 8924626767041, 58747021129764, 386706739558753, 2545526317441000
Offset: 1

Views

Author

Ralf Stephan, Aug 27 2004

Keywords

Comments

This is one of only two Lucas-type sequences whose 8th term is a square.
The other one is A006131. - Michel Marcus, Dec 07 2012

Crossrefs

Cf. A006131.

Programs

  • Maple
    f:= gfun:-rectoproc({a(n) = 4*a(n-1) + 17*a(n-2), a(1)=1, a(2)=4}, a(n), remember): map(f, [$0..20]); # Georg Fischer, Jun 18 2021
  • Maxima
    a[0]:0$
    a[1]:1$
    a[n]:=4*a[n-1] + 17*a[n-2]$
    A097705(n):=a[n]$
    makelist(A097705(n),n,1,30); /* Martin Ettl, Nov 03 2012 */

Formula

G.f.: 1/(1-4x-17x^2).

Extensions

Definition adapted to offset by Georg Fischer, Jun 18 2021

A099580 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k-1) * 4^(k-1).

Original entry on oeis.org

0, 0, 1, 1, 9, 13, 65, 117, 441, 909, 2929, 6565, 19305, 45565, 126881, 309141, 833049, 2069613, 5467345, 13745797, 35877321, 90860509, 235418369, 598860405, 1544728185, 3940169805, 10135859761, 25896538981, 66507086889, 170093242813
Offset: 0

Views

Author

Paul Barry, Oct 23 2004

Keywords

Comments

In general a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k-1) * r^(k-1) has g.f. x^2/((1-r*x^2)*(1-x-r*x^2)) and satisfies the recurrence a(n) = a(n-1) + 2*r*a(n-2) - r*a(n-3) - r^2*a(n-4).

Crossrefs

Programs

  • Magma
    [n le 4 select Floor((n-1)/2) else Self(n-1) +8*Self(n-2) -4*Self(n-3) -16*Self(n-4): n in [1..41]]; // G. C. Greubel, Jul 24 2022
    
  • Mathematica
    LinearRecurrence[{1,8,-4,-16}, {0,0,1,1}, 51] (* G. C. Greubel, Jul 24 2022 *)
  • SageMath
    @CachedFunction
    def a(n): # a = A099580
        if (n<4): return (n//2)
        else: return a(n-1) +8*a(n-2) -4*a(n-3) -16*a(n-4)
    [a(n) for n in (0..40)] # G. C. Greubel, Jul 24 2022

Formula

G.f.: x^2/((1-4*x^2) * (1-x-4*x^2)).
a(n) = a(n-1) + 8*a(n-2) - 4*a(n-3) - 16*a(n-4).
From G. C. Greubel, Jul 24 2022: (Start)
a(n) = (4*(2/i)^(n-1)*ChebyshevU(n-1, i/4) - 2^n*(1-(-1)^n))/4.
E.g.f.: ( 4*exp(x/2)*sinh(sqrt(17)*x/2) - sqrt(17)*sinh(2*x) )/(2*sqrt(17)). (End)

A102446 a(n) = a(n-1) + 4*a(n-2) for n>1, a(0) = a(1) = 2.

Original entry on oeis.org

2, 2, 10, 18, 58, 130, 362, 882, 2330, 5858, 15178, 38610, 99322, 253762, 651050, 1666098, 4270298, 10934690, 28015882, 71754642, 183818170, 470836738, 1206109418, 3089456370, 7913894042, 20271719522, 51927295690, 133014173778, 340723356538, 872780051650
Offset: 0

Views

Author

N. J. A. Sloane, based on a suggestion from R. K. Guy, Feb 23 2005

Keywords

Comments

The continued fraction expansion c_0 = 0, c_n = 1/2 (n>0) (see a paper by Bremner & Tzanakis) has convergents 2/1, 2/5, 10/9, 18/29, 58/65, 130/181, ... where the numerators and denominators satisfy the recurrence a_n = a_{n-1} + 4a_{n-2}. The denominators are A006131 and the numerators are the present sequence.

Crossrefs

Cf. A006131.

Programs

  • Magma
    [n le 2 select 2 else Self(n-1) + 4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 17 2015
    
  • Mathematica
    a[0] = a[1] = 2; a[n_] := a[n] = a[n - 1] + 4a[n - 2]; Table[ a[n], {n, 0, 27}] (* Robert G. Wilson v, Feb 23 2005 *)
    LinearRecurrence[{1, 4}, {2, 2}, 30] (* Vincenzo Librandi, Dec 17 2015 *)
  • PARI
    Vec(-2 / (-1+x+4*x^2) + O(x^40)) \\ Colin Barker, Dec 22 2016
  • Sage
    from sage.combinat.sloane_functions import recur_gen2b
    it = recur_gen2b(2,2,1,4, lambda n: 0)
    [next(it) for i in range(29)] # Zerinvary Lajos, Jul 09 2008
    
  • Sage
    def A000129():
        x, y = 0, 1
        while True:
            x, y = (x + y) << 1, x - y
            yield x
    a = A000129(); [next(a) for i in range(28)]  # Peter Luschny, Dec 17 2015
    

Formula

a(n) = 2 * A006131(n).
G.f.: Q(0)/x -1/x, where Q(k) = 1 + 4*x^2 + (2*k+3)*x - x*(2*k+1 + 4*x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 05 2013
G.f.: -2 / ( -1+x+4*x^2 ). - R. J. Mathar, Feb 10 2016
a(n) = (2^(-n)*(-(1-sqrt(17))^(1+n) + (1+sqrt(17))^(1+n)))/sqrt(17). - Colin Barker, Dec 22 2016

Extensions

More terms from Robert G. Wilson v, Feb 23 2005
Previous Showing 21-30 of 46 results. Next