A081280
Binomial transform of Chebyshev coefficients A006974.
Original entry on oeis.org
1, 10, 69, 398, 2057, 9858, 44685, 194022, 813969, 3319866, 13224789, 51635070, 198148761, 749016882, 2794021533, 10300389462, 37575535905, 135782112618, 486470994021, 1729358969454, 6104068084521, 21404982017250, 74609825192109
Offset: 0
-
[(n^4+24*n^3+164*n^2+378*n+243)*3^(n-5): n in [0..25]]; // Vincenzo Librandi, Aug 07 2013
-
CoefficientList[Series[(1 - 2 x) (1 - x)^3 / (1 - 3 x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 07 2013 *)
LinearRecurrence[{15,-90,270,-405,243},{1,10,69,398,2057},30] (* Harvey P. Dale, May 05 2019 *)
A082308
Expansion of e.g.f. (1+x)*exp(4*x)*cosh(x).
Original entry on oeis.org
1, 5, 25, 127, 657, 3449, 18281, 97395, 519841, 2773741, 14776377, 78538343, 416367665, 2201517153, 11610231433, 61078202971, 320570884929, 1678897264085, 8775159682649, 45780628812879, 238431945108433
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!((1+x)*Exp(4*x)*Cosh(x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Sep 16 2018
-
With[{nmax = 50}, CoefficientList[Series[(1 + x)*Exp[4*x]*Cosh[x], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Sep 16 2018 *)
-
x='x+O('x^30); Vec(serlaplace((1+x)*exp(4*x)*cosh(x))) \\ G. C. Greubel, Sep 16 2018
A089944
Square array, read by antidiagonals, where the n-th row is the n-th binomial transform of the natural numbers, with T(0,k) = (k+1) for k>=0.
Original entry on oeis.org
1, 2, 1, 3, 3, 1, 4, 8, 4, 1, 5, 20, 15, 5, 1, 6, 48, 54, 24, 6, 1, 7, 112, 189, 112, 35, 7, 1, 8, 256, 648, 512, 200, 48, 8, 1, 9, 576, 2187, 2304, 1125, 324, 63, 9, 1, 10, 1280, 7290, 10240, 6250, 2160, 490, 80, 10, 1, 11, 2816, 24057, 45056, 34375, 14256, 3773, 704, 99, 11, 1
Offset: 0
Rows begin:
{1, 2, 3, 4, 5, 6, 7,..},
{1, 3, 8, 20, 48, 112, 256,..},
{1, 4, 15, 54, 189, 648, 2187,..},
{1, 5, 24, 112, 512, 2304, 10240,..},
{1, 6, 35, 200, 1125, 6250, 34375,..},
{1, 7, 48, 324, 2160, 14256, 93312,..},
{1, 8, 63, 490, 3773, 28812, 218491,..},..
-
A089944[n_, k_] := (k + n + 1)*(n + 1)^(k - 1);
Table[A089944[k, n - k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 13 2025 *)
-
T(n,k)=if(n<0 || k<0,0,(k+n+1)*(n+1)^(k-1))
A164948
Fibonacci matrix read by antidiagonals. (Inverse of A136158.)
Original entry on oeis.org
1, 1, -1, 3, -4, 1, 9, -15, 7, -1, 27, -54, 36, -10, 1, 81, -189, 162, -66, 13, -1, 243, -648, 675, -360, 105, -16, 1, 729, -2187, 2673, -1755, 675, -153, 19, -1, 2187, -7290, 10206, -7938, 3780, -1134, 210, -22, 1, 6561, -24057, 37908, -34020, 19278, -7182, 1764, -276, 25, -1, 19683, -78732, 137781, -139968, 91854, -40824, 12474, -2592, 351, -28, 1
Offset: 0
As triangle:
1;
1, -1;
3, -4, 1;
9, -15, 7, -1;
27, -54, 36, -10, 1;
81, -189, 162, -66, 13, -1;
243, -648, 675, -360, 105, -16, 1;
-
A164948:= func< n,k | n eq 0 select 1 else (-1)^k*3^(n-k-1)*(n+2*k)*Binomial(n,k)/n >;
[A164948(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 26 2023
-
A164948[n_,k_]:= If[n==0,1,(-1)^k*3^(n-k-1)*(n+2*k)*Binomial[n,k]/n];
Table[A164948[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 26 2023 *)
-
def A164948(n,k): return 1 if (n==0) else (-1)^k*3^(n-k-1)*((n+2*k)/n)*binomial(n, k)
flatten([[A164948(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 26 2023
Original entry on oeis.org
1, 1, 2, 3, 8, 4, 9, 30, 28, 8, 27, 108, 144, 80, 16, 81, 378, 648, 528, 208, 32, 243, 1296, 2700, 2880, 1680, 512, 64, 729, 4374, 10692, 14040, 10800, 4896, 1216, 128, 2187, 14580, 40824, 63504, 60480, 36288, 13440, 2816, 256, 6561, 48114, 151632, 272160, 308448, 229824, 112896, 35328, 6400, 512
Offset: 0
First six rows:
1;
1, 2;
3, 8, 4;
9, 30, 28, 8;
27, 108, 144, 80, 16;
81, 378, 648, 528, 208, 32;
-
function T(n, k) // T = A193731
if k lt 0 or k gt n then return 0;
elif n lt 2 then return k+1;
else return 3*T(n-1, k) + 2*T(n-1, k-1);
end if;
end function;
[T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 20 2023
-
(* First program *)
z = 8; a = 2; b = 1; c = 2; d = 1;
p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
g[n_] := CoefficientList[w[n, x], {x}]
TableForm[Table[Reverse[g[n]], {n, -1, z}]]
Flatten[Table[Reverse[g[n]], {n, -1, z}]] (* A193730 *)
TableForm[Table[g[n], {n, -1, z}]]
Flatten[Table[g[n], {n, -1, z}]] (* A193731 *)
(* Second program *)
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n<2, k+1, 3*T[n-1, k] + 2*T[n -1, k-1]]];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 20 2023 *)
-
def T(n, k): # T = A193731
if (k<0 or k>n): return 0
elif (n<2): return k+1
else: return 3*T(n-1, k) + 2*T(n-1, k-1)
flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 20 2023
A079027
a(n) = det(M(n)) where M(n) is the n X n matrix defined by m(i,i)=6, m(i,j)=i/j.
Original entry on oeis.org
6, 35, 200, 1125, 6250, 34375, 187500, 1015625, 5468750, 29296875, 156250000, 830078125, 4394531250, 23193359375, 122070312500, 640869140625, 3356933593750, 17547607421875, 91552734375000, 476837158203125, 2479553222656250, 12874603271484375
Offset: 1
-
A079027:=n->(n + 5)*5^(n - 1); seq(A079027(n), n=1..50); # Wesley Ivan Hurt, Nov 30 2013
-
Table[(n + 5)*5^(n - 1), {n, 50}] (* Wesley Ivan Hurt, Nov 30 2013 *)
LinearRecurrence[{10,-25},{6,35},30] (* Harvey P. Dale, Jun 14 2022 *)
-
a(n) = matdet(matrix(n, n, i, j, if(i==j, 6, i/j))); \\ Michel Marcus, Nov 30 2013
A082306
Expansion of e.g.f. (1+x)*exp(2*x)*cosh(x).
Original entry on oeis.org
1, 3, 9, 29, 97, 327, 1097, 3649, 12033, 39371, 127945, 413349, 1328609, 4251535, 13551753, 43046729, 136314625, 430467219, 1355971721, 4261625389, 13366006881, 41841412823, 130754415049, 407953774929, 1270932914177
Offset: 0
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!((1+x)*Exp(2*x)*Cosh(x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Sep 16 2018
-
With[{nmax = 50}, CoefficientList[Series[(1 + x)*Exp[2*x]*Cosh[x], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Sep 16 2018 *)
-
x='x+O('x^30); Vec(serlaplace((1+x)*exp(2*x)*cosh(x))) \\ G. C. Greubel, Sep 16 2018
A125586
a(n) = 2^(2n-1) - (n+2)*3^(n-2).
Original entry on oeis.org
1, 4, 17, 74, 323, 1400, 6005, 25478, 107015, 445556, 1841273, 7561922, 30897227, 125714672, 509767421, 2061390206, 8317305359, 33498803948, 134727010049, 541232563130, 2172291241811, 8712410196584, 34922863258757, 139921580805494, 560408087592983
Offset: 1
a(2) = 4:
10 10 11 11
01 11 01 10
-
A125586:=n->2^(2n-1)-(n+2)*3^(n-2); seq(A125586(n), n=1..30); # Wesley Ivan Hurt, Feb 26 2014
-
Table[2^(2n-1)-(n+2)*3^(n-2), {n, 30}] (* Wesley Ivan Hurt, Feb 26 2014 *)
LinearRecurrence[{10,-33,36},{1,4,17},50] (* Harvey P. Dale, Sep 15 2019 *)
-
Vec(-x*(10*x^2-6*x+1)/((3*x-1)^2*(4*x-1)) + O(x^100)) \\ Colin Barker, Feb 26 2014
A291004
p-INVERT of (1,1,1,1,1,...), where p(S) = (1 - 3*S)^2.
Original entry on oeis.org
6, 33, 168, 816, 3840, 17664, 79872, 356352, 1572864, 6881280, 29884416, 128974848, 553648128, 2365587456, 10066329600, 42681237504, 180388626432, 760209211392, 3195455668224, 13400297963520, 56075093016576, 234195976716288, 976366325465088, 4063794976260096
Offset: 0
-
[3*(4^(n-1)*(3*n+8)): n in [0..30]]; // Vincenzo Librandi, Aug 27 2017
-
z = 60; s = x/(1-x); p = (1 - 3 s)^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291004 *)
LinearRecurrence[{8, -16}, {6, 33}, 25] (* Vincenzo Librandi, Aug 27 2017 *)
-
[3*4^n*(3*n+8)//4 for n in range(41)] # G. C. Greubel, Jun 01 2023
A382618
a(n) = 3^(n-2)*(binomial(n,2) + 3*n + 9).
Original entry on oeis.org
1, 4, 16, 63, 243, 918, 3402, 12393, 44469, 157464, 551124, 1909251, 6554439, 22320522, 75464622, 253497357, 846585513, 2812385772, 9298091736, 30606218631, 100341906651, 327757733694, 1066956026706, 3462376910193, 11203038280413, 36150980669568, 116360969030172
Offset: 0
a(4) = 243 since from the 256 words defined on {0, 1, 2, 3} we subtract the 4 words of type 0001, the 4 words of type 0002, the 4 words of type 0003, and 0000.
Comments