cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A081280 Binomial transform of Chebyshev coefficients A006974.

Original entry on oeis.org

1, 10, 69, 398, 2057, 9858, 44685, 194022, 813969, 3319866, 13224789, 51635070, 198148761, 749016882, 2794021533, 10300389462, 37575535905, 135782112618, 486470994021, 1729358969454, 6104068084521, 21404982017250, 74609825192109
Offset: 0

Views

Author

Paul Barry, Mar 16 2003

Keywords

Crossrefs

Programs

  • Magma
    [(n^4+24*n^3+164*n^2+378*n+243)*3^(n-5): n in [0..25]]; // Vincenzo Librandi, Aug 07 2013
  • Mathematica
    CoefficientList[Series[(1 - 2 x) (1 - x)^3 / (1 - 3 x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Aug 07 2013 *)
    LinearRecurrence[{15,-90,270,-405,243},{1,10,69,398,2057},30] (* Harvey P. Dale, May 05 2019 *)

Formula

a(n) = (n^4+24*n^3+164*n^2+378*n+243) * 3^(n-5).
a(n) = 15*a(n-1) -90*a(n-2) +270a*(n-3) -405*a(n-4) +243*a(n-5).
G.f.: (1-2*x)*(1-x)^3/(1-3*x)^5.

A082308 Expansion of e.g.f. (1+x)*exp(4*x)*cosh(x).

Original entry on oeis.org

1, 5, 25, 127, 657, 3449, 18281, 97395, 519841, 2773741, 14776377, 78538343, 416367665, 2201517153, 11610231433, 61078202971, 320570884929, 1678897264085, 8775159682649, 45780628812879, 238431945108433
Offset: 0

Views

Author

Paul Barry, Apr 09 2003

Keywords

Comments

Binomial transform of A082307.

Crossrefs

Cf. A082309.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!((1+x)*Exp(4*x)*Cosh(x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Sep 16 2018
  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[(1 + x)*Exp[4*x]*Cosh[x], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Sep 16 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace((1+x)*exp(4*x)*cosh(x))) \\ G. C. Greubel, Sep 16 2018
    

Formula

a(n) = (A081105(n) + A006234(n))/2.
a(n) = ((n+3)*3^(n-1) + (n+5)*5^(n-1))/2.
G.f.: ((1-4*x)/(1-5*x)^2 + (1-2*x)/(1-3*x)^2)/2.
E.g.f.: (1+x)*exp(4*x)*cosh(x) = (1+x)*(exp(5*x) + exp(3*x))/2.

A089944 Square array, read by antidiagonals, where the n-th row is the n-th binomial transform of the natural numbers, with T(0,k) = (k+1) for k>=0.

Original entry on oeis.org

1, 2, 1, 3, 3, 1, 4, 8, 4, 1, 5, 20, 15, 5, 1, 6, 48, 54, 24, 6, 1, 7, 112, 189, 112, 35, 7, 1, 8, 256, 648, 512, 200, 48, 8, 1, 9, 576, 2187, 2304, 1125, 324, 63, 9, 1, 10, 1280, 7290, 10240, 6250, 2160, 490, 80, 10, 1, 11, 2816, 24057, 45056, 34375, 14256, 3773, 704, 99, 11, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 23 2003

Keywords

Comments

The main diagonal is A089945: {T(n,n)=(2*n+1)*(n+1)^(n-1), n>=0}; the hyperbinomial transform of the main diagonal is the next lower diagonal in the array (A089946): {T(n+1,n) = 2*(n+1)*(n+2)^(n-1), n>=0}.

Examples

			Rows begin:
  {1, 2, 3, 4, 5, 6, 7,..},
  {1, 3, 8, 20, 48, 112, 256,..},
  {1, 4, 15, 54, 189, 648, 2187,..},
  {1, 5, 24, 112, 512, 2304, 10240,..},
  {1, 6, 35, 200, 1125, 6250, 34375,..},
  {1, 7, 48, 324, 2160, 14256, 93312,..},
  {1, 8, 63, 490, 3773, 28812, 218491,..},..
		

Crossrefs

Programs

  • Mathematica
    A089944[n_, k_] := (k + n + 1)*(n + 1)^(k - 1);
    Table[A089944[k, n - k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Jan 13 2025 *)
  • PARI
    T(n,k)=if(n<0 || k<0,0,(k+n+1)*(n+1)^(k-1))

Formula

T(n,k) = (k+n+1)*(n+1)^(k-1).
E.g.f.: (1+x)*exp(x)/(1-y*exp(x)).

A164948 Fibonacci matrix read by antidiagonals. (Inverse of A136158.)

Original entry on oeis.org

1, 1, -1, 3, -4, 1, 9, -15, 7, -1, 27, -54, 36, -10, 1, 81, -189, 162, -66, 13, -1, 243, -648, 675, -360, 105, -16, 1, 729, -2187, 2673, -1755, 675, -153, 19, -1, 2187, -7290, 10206, -7938, 3780, -1134, 210, -22, 1, 6561, -24057, 37908, -34020, 19278, -7182, 1764, -276, 25, -1, 19683, -78732, 137781, -139968, 91854, -40824, 12474, -2592, 351, -28, 1
Offset: 0

Views

Author

Mark Dols, Sep 01 2009

Keywords

Comments

Triangle, read by rows, given by [1,2,0,0,0,0,0,0,0,...] DELTA [-1,0,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Sep 02 2009

Examples

			As triangle:
    1;
    1,   -1;
    3,   -4,    1;
    9,  -15,    7,   -1;
   27,  -54,   36,  -10,    1;
   81, -189,  162,  -66,   13,   -1;
  243, -648,  675, -360,  105,  -16,    1;
		

Crossrefs

Programs

  • Magma
    A164948:= func< n,k | n eq 0 select 1 else (-1)^k*3^(n-k-1)*(n+2*k)*Binomial(n,k)/n >;
    [A164948(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Dec 26 2023
    
  • Mathematica
    A164948[n_,k_]:= If[n==0,1,(-1)^k*3^(n-k-1)*(n+2*k)*Binomial[n,k]/n];
    Table[A164948[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Dec 26 2023 *)
  • SageMath
    def A164948(n,k): return 1 if (n==0) else (-1)^k*3^(n-k-1)*((n+2*k)/n)*binomial(n, k)
    flatten([[A164948(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Dec 26 2023

Formula

Sum_{k=0..n} T(n, k) = A000007(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A001519(n).
From Philippe Deléham, Oct 09 2011: (Start)
T(n,k) = 3*T(n-1,k) - T(n-1,k-1) with T(0,0)=1, T(1,0)=1, T(1,1)=-1.
Row n: Expansion of (1-x)*(3-x)^(n-1), n>0. (End)
G.f.: (1-2*x)/(1-3*x+x*y). - R. J. Mathar, Aug 12 2015
From G. C. Greubel, Dec 26 2023: (Start)
T(n, k) = (-1)^k * A136158(n, k).
T(n, k) = (-1)^k*3^(n-k-1)*((n+2*k)/n)*binomial(n, k), for n > 0, with T(0, 0) = 1.
T(n, 0) = A133494(n).
T(n, 1) = -A006234(n+2), n >= 1.
T(n, 2) = A080420(n-2), n >= 2.
T(n, 3) = -A080421(n-3), n >= 3.
T(2*n, n) = 4*(-1)^n*A098399(n-1) - (1/3)*[n=0].
T(n, n-4) = 27*(-1)^n*A001296(n-3), n >= 4.
T(n, n-3) = 9*(-1)^(n-1)*A002411(n-2), n >= 3.
T(n, n-2) = 3*(-1)^n*A000326(n-1) = (-1)^n*A062741(n-1), n >= 2.
T(n, n-1) = (-1)^(n-1)*A016777(n-1), n >= 1.
T(n, n) = (-1)^n.
Sum_{k=0..n} (-1)^k*T(n, k) = A081294(n).
Sum_{k=0..n} (-1)^k*T(n-k, k) = A003688(n). (End)

Extensions

More terms from Philippe Deléham, Oct 09 2011

A193731 Mirror of the triangle A193730.

Original entry on oeis.org

1, 1, 2, 3, 8, 4, 9, 30, 28, 8, 27, 108, 144, 80, 16, 81, 378, 648, 528, 208, 32, 243, 1296, 2700, 2880, 1680, 512, 64, 729, 4374, 10692, 14040, 10800, 4896, 1216, 128, 2187, 14580, 40824, 63504, 60480, 36288, 13440, 2816, 256, 6561, 48114, 151632, 272160, 308448, 229824, 112896, 35328, 6400, 512
Offset: 0

Views

Author

Clark Kimberling, Aug 04 2011

Keywords

Comments

A193731 is obtained by reversing the rows of the triangle A193730.
Triangle T(n,k), read by rows, given by (1,2,0,0,0,0,0,0,0,...) DELTA (2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 05 2011

Examples

			First six rows:
   1;
   1,   2;
   3,   8,   4;
   9,  30,  28,   8;
  27, 108, 144,  80,  16;
  81, 378, 648, 528, 208, 32;
		

Crossrefs

Programs

  • Magma
    function T(n, k) // T = A193731
      if k lt 0 or k gt n then return 0;
      elif n lt 2 then return k+1;
      else return 3*T(n-1, k) + 2*T(n-1, k-1);
      end if;
    end function;
    [T(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 20 2023
    
  • Mathematica
    (* First program *)
    z = 8; a = 2; b = 1; c = 2; d = 1;
    p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n
    t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, x] /. x -> 0;
    w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, x_] := 1
    g[n_] := CoefficientList[w[n, x], {x}]
    TableForm[Table[Reverse[g[n]], {n, -1, z}]]
    Flatten[Table[Reverse[g[n]], {n, -1, z}]]  (* A193730 *)
    TableForm[Table[g[n], {n, -1, z}]]
    Flatten[Table[g[n], {n, -1, z}]]     (* A193731 *)
    (* Second program *)
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[n<2, k+1, 3*T[n-1, k] + 2*T[n -1, k-1]]];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 20 2023 *)
  • SageMath
    def T(n, k): # T = A193731
        if (k<0 or k>n): return 0
        elif (n<2): return k+1
        else: return 3*T(n-1, k) + 2*T(n-1, k-1)
    flatten([[T(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Nov 20 2023

Formula

T(n,k) = A193730(n,n-k).
T(n,k) = 2*T(n-1,k-1) + 3*T(n-1,k) with T(0,0)=T(1,0)=1 and T(1,1)=2. - Philippe Deléham, Oct 05 2011
G.f.: (1-2*x)/(1-3*x-2*x*y). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Nov 20 2023: (Start)
T(n, 0) = A133494(n).
T(n, 1) = 2*A006234(n+2).
T(n, 2) = 4*A080420(n-2).
T(n, 3) = 8*A080421(n-3).
T(n, 4) = 16*A080422(n-4).
T(n, 5) = 32*A080423(n-5).
T(n, n) = A000079(n).
T(n, n-1) = A130129(n-1).
Sum_{k=0..n} T(n, k) = A005053(n).
Sum_{k=0..n} (-1)^k * T(n, k) = A153881(n).
Sum_{k=0..floor(n/2)} T(n-k, k) = A007483(n-1).
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = A000012(n). (End)

A079027 a(n) = det(M(n)) where M(n) is the n X n matrix defined by m(i,i)=6, m(i,j)=i/j.

Original entry on oeis.org

6, 35, 200, 1125, 6250, 34375, 187500, 1015625, 5468750, 29296875, 156250000, 830078125, 4394531250, 23193359375, 122070312500, 640869140625, 3356933593750, 17547607421875, 91552734375000, 476837158203125, 2479553222656250, 12874603271484375
Offset: 1

Views

Author

Benoit Cloitre, Feb 01 2003

Keywords

Crossrefs

Cf. A006234.

Programs

Formula

a(n) = (n+5)*5^(n-1).
a(n) = 10*a(n-1)-25*a(n-2). G.f.: -x*(25*x-6) / (5*x-1)^2. - Colin Barker, Jun 18 2013
From Amiram Eldar, Jan 18 2021: (Start)
Sum_{n>=1} 1/a(n) = 15625*log(5/4) - 41837/12.
Sum_{n>=1} (-1)^(n+1)/a(n) = 34187/12 - 15625*log(6/5). (End)

Extensions

More terms from Michel Marcus, Nov 30 2013

A082306 Expansion of e.g.f. (1+x)*exp(2*x)*cosh(x).

Original entry on oeis.org

1, 3, 9, 29, 97, 327, 1097, 3649, 12033, 39371, 127945, 413349, 1328609, 4251535, 13551753, 43046729, 136314625, 430467219, 1355971721, 4261625389, 13366006881, 41841412823, 130754415049, 407953774929, 1270932914177
Offset: 0

Views

Author

Paul Barry, Apr 09 2003

Keywords

Comments

Binomial transform of A082305 a(n)=(A006234(n)+A000027(n))/2

Crossrefs

Cf. A082307.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!((1+x)*Exp(2*x)*Cosh(x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Sep 16 2018
  • Mathematica
    With[{nmax = 50}, CoefficientList[Series[(1 + x)*Exp[2*x]*Cosh[x], {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Sep 16 2018 *)
  • PARI
    x='x+O('x^30); Vec(serlaplace((1+x)*exp(2*x)*cosh(x))) \\ G. C. Greubel, Sep 16 2018
    

Formula

a(n) = (n + 1 + 3^(n-1)*(n + 3))/2.
G.f.: (1/(1-x)^2 + (1-2*x)/(1-3*x)^2)/2.
E.g.f.: (1+x)*exp(2*x)*cosh(x).

A125586 a(n) = 2^(2n-1) - (n+2)*3^(n-2).

Original entry on oeis.org

1, 4, 17, 74, 323, 1400, 6005, 25478, 107015, 445556, 1841273, 7561922, 30897227, 125714672, 509767421, 2061390206, 8317305359, 33498803948, 134727010049, 541232563130, 2172291241811, 8712410196584, 34922863258757, 139921580805494, 560408087592983
Offset: 1

Views

Author

Keywords

Comments

Number of n X n nonsingular real matrices with entries {0,1} in which the top left n-1 X n-1 submatrix is the identity matrix. See A125587 for proof.
The number of singular matrices is given by A006234.

Examples

			a(2) = 4:
10 10 11 11
01 11 01 10
		

Crossrefs

Programs

Formula

G.f.: -x*(10*x^2-6*x+1) / ((3*x-1)^2*(4*x-1)). - Colin Barker, Feb 26 2014

A291004 p-INVERT of (1,1,1,1,1,...), where p(S) = (1 - 3*S)^2.

Original entry on oeis.org

6, 33, 168, 816, 3840, 17664, 79872, 356352, 1572864, 6881280, 29884416, 128974848, 553648128, 2365587456, 10066329600, 42681237504, 180388626432, 760209211392, 3195455668224, 13400297963520, 56075093016576, 234195976716288, 976366325465088, 4063794976260096
Offset: 0

Views

Author

Clark Kimberling, Aug 23 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A291000 for a guide to related sequences.

Crossrefs

Programs

  • Magma
    [3*(4^(n-1)*(3*n+8)): n in [0..30]]; // Vincenzo Librandi, Aug 27 2017
    
  • Mathematica
    z = 60; s = x/(1-x); p = (1 - 3 s)^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000012 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291004 *)
    LinearRecurrence[{8, -16}, {6, 33}, 25] (* Vincenzo Librandi, Aug 27 2017 *)
  • SageMath
    [3*4^n*(3*n+8)//4 for n in range(41)] # G. C. Greubel, Jun 01 2023

Formula

G.f.: 3*(2 - 5*x)/(1 - 4*x)^2.
a(n) = 8*a(n-1) - 16*a(n-2) for n >= 3.
a(n) = 3*A006234(n+3) for n >= 0.
a(n) = 3 * 4^(n-1) * (3*n+8). - Colin Barker, Aug 23 2017

A382618 a(n) = 3^(n-2)*(binomial(n,2) + 3*n + 9).

Original entry on oeis.org

1, 4, 16, 63, 243, 918, 3402, 12393, 44469, 157464, 551124, 1909251, 6554439, 22320522, 75464622, 253497357, 846585513, 2812385772, 9298091736, 30606218631, 100341906651, 327757733694, 1066956026706, 3462376910193, 11203038280413, 36150980669568, 116360969030172
Offset: 0

Views

Author

Enrique Navarrete, Apr 01 2025

Keywords

Comments

a(n) is the number of words of length n defined on 4 letters where a chosen letter (for example, the first letter of the alphabet) is used at most twice.

Examples

			a(4) = 243 since from the 256 words defined on {0, 1, 2, 3} we subtract the 4 words of type 0001, the 4 words of type 0002, the 4 words of type 0003, and 0000.
		

Crossrefs

Cf. A006234.

Programs

  • Mathematica
    a[n_] := 3^(n-2)*(n^2 + 5*n + 18)/2; Array[a, 27, 0] (* Amiram Eldar, Apr 01 2025 *)

Formula

E.g.f.: (1 + x + x^2/2)*exp(3*x).
G.f.: x*(1 - 5*x + 7*x^2)/(1 - 3*x)^3. - Stefano Spezia, Apr 01 2025
Previous Showing 21-30 of 34 results. Next