cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 270 results. Next

A330944 Number of nonprime prime indices of n.

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 1, 3, 0, 1, 0, 2, 1, 2, 0, 4, 0, 1, 1, 2, 1, 1, 1, 3, 0, 2, 0, 3, 1, 1, 0, 5, 0, 1, 1, 2, 1, 2, 1, 3, 0, 2, 1, 2, 0, 2, 1, 4, 2, 1, 0, 3, 1, 1, 0, 4, 1, 2, 0, 2, 1, 1, 1, 6, 1, 1, 0, 2, 1, 2, 1, 3, 1, 2, 0, 3, 1, 2, 1, 4, 0, 1, 0, 3, 0, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			24 has prime indices {1,1,1,2}, of which {1,1,1} are nonprime, so a(24) = 3.
		

Crossrefs

The number of prime prime indices is given by A257994.
Primes of prime index are A006450.
Primes of nonprime index are A007821.
Products of primes of prime index are A076610.
Products of primes of nonprime index are A320628.
Numbers whose prime indices are not all prime are A330945.

Programs

  • Mathematica
    Table[Total[Cases[If[n==1,{},FactorInteger[n]],{p_,k_}/;!PrimeQ[PrimePi[p]]:>k]],{n,30}]
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, if(!isprime(primepi(f[k,1])), f[k,2], 0)); \\ Daniel Suteu, Jan 14 2020

Formula

a(n) + A257994(n) = A001222(n).
Additive with a(p^e) = e if primepi(p) is nonprime, and 0 otherwise. - Amiram Eldar, Nov 03 2023

A049081 Primes prime(k) for which A049076(k) = 5.

Original entry on oeis.org

31, 1787, 8527, 19577, 27457, 42043, 72727, 96797, 112129, 137077, 173867, 239489, 250751, 285191, 352007, 401519, 443419, 464939, 490643, 527623, 683873, 718807, 755387, 839483, 864013, 985151, 1021271, 1080923, 1159901, 1278779
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Extensions

More terms from Robert G. Wilson v, Dec 12 2000

A320629 Products of odd primes of nonprime index.

Original entry on oeis.org

1, 7, 13, 19, 23, 29, 37, 43, 47, 49, 53, 61, 71, 73, 79, 89, 91, 97, 101, 103, 107, 113, 131, 133, 137, 139, 149, 151, 161, 163, 167, 169, 173, 181, 193, 197, 199, 203, 223, 227, 229, 233, 239, 247, 251, 257, 259, 263, 269, 271, 281, 293, 299, 301, 307, 311
Offset: 1

Views

Author

Gus Wiseman, Oct 18 2018

Keywords

Comments

The index of a prime number n is the number m such that n is the m-th prime.
The asymptotic density of this sequence is (1/2) * Product_{p in A006450} (1 - 1/p) = 1/(2*Sum_{n>=1} 1/A076610(n)) < 1/6. - Amiram Eldar, Feb 02 2021

Examples

			The sequence of terms begins:
    1 = 1
    7 = prime(4)
   13 = prime(6)
   19 = prime(8)
   23 = prime(9)
   29 = prime(10)
   37 = prime(12)
   43 = prime(14)
   47 = prime(15)
   49 = prime(4)^2
   53 = prime(16)
   61 = prime(18)
   71 = prime(20)
   73 = prime(21)
   79 = prime(22)
   89 = prime(24)
   91 = prime(4)*prime(6)
   97 = prime(25)
  101 = prime(26)
  103 = prime(27)
  107 = prime(28)
  113 = prime(30)
  131 = prime(32)
  133 = prime(4)*prime(8)
  137 = prime(33)
  139 = prime(34)
  149 = prime(35)
  151 = prime(36)
  161 = prime(4)*prime(9)
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1,100,2],And@@Not/@PrimeQ/@PrimePi/@First/@FactorInteger[#]&]

A064988 Multiplicative with a(p^e) = prime(p)^e.

Original entry on oeis.org

1, 3, 5, 9, 11, 15, 17, 27, 25, 33, 31, 45, 41, 51, 55, 81, 59, 75, 67, 99, 85, 93, 83, 135, 121, 123, 125, 153, 109, 165, 127, 243, 155, 177, 187, 225, 157, 201, 205, 297, 179, 255, 191, 279, 275, 249, 211, 405, 289, 363, 295, 369, 241, 375, 341, 459, 335, 327
Offset: 1

Views

Author

Vladeta Jovovic, Oct 30 2001

Keywords

Examples

			a(12) = a(2^2*3) = prime(2)^2 * prime(3) = 3^2*5 = 45, where prime(n) = A000040(n).
		

Crossrefs

Cf. A000040, A003961, A003963 (a left inverse), A006450, A048767, A257538, A290641.
Cf. A076610 (terms sorted into ascending order).

Programs

  • Maple
    a:= n-> mul(ithprime(i[1])^i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..70);  # Alois P. Heinz, Sep 06 2018
  • Mathematica
    Table[If[n == 1, 1, Apply[Times, FactorInteger[n] /. {p_, e_} /; p > 1 :> Prime[p]^e]], {n, 58}] (* Michael De Vlieger, Aug 22 2017 *)
  • PARI
    { for (n=1, 1000, f=factor(n)~; a=1; for (i=1, length(f), a*=prime(f[1, i])^f[2, i]); write("b064988.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 02 2009
    
  • PARI
    a(n) = {my(f = factor(n)); for (k=1, #f~, f[k, 1] = prime(f[k, 1]);); factorback(f);} \\ Michel Marcus, Aug 08 2017
    
  • Python
    from sympy import factorint, prime
    from operator import mul
    def a(n): return 1 if n==1 else reduce(mul, [prime(p)**e for p, e in factorint(n).items()])
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Aug 08 2017
  • Scheme
    (define (A064988 n) (if (= 1 n) n (* (A000040 (A020639 n)) (A064988 (A032742 n))))) ;; Antti Karttunen, Aug 08 2017
    

Formula

From Antti Karttunen, Aug 08 & 22 2017: (Start)
For n = p_{i1} * p_{i2} * ... * p_{ik}, where the indices i1, i2, ..., ik of primes p are not necessarily distinct, a(n) = A006450(i1) * A006450(i2) * ... * A006450(ik).
a(n) = A003961(A290641(n)).
A046523(a(n)) = A046523(n). [Preserves the prime signature of n].
A003963(a(n)) = n.
(End)

A330945 Numbers whose prime indices are not all prime numbers.

Original entry on oeis.org

2, 4, 6, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 32, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 82, 84, 86, 87
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices of prime indices begins:
   2: {{}}
   4: {{},{}}
   6: {{},{1}}
   7: {{1,1}}
   8: {{},{},{}}
  10: {{},{2}}
  12: {{},{},{1}}
  13: {{1,2}}
  14: {{},{1,1}}
  16: {{},{},{},{}}
  18: {{},{1},{1}}
  19: {{1,1,1}}
  20: {{},{},{2}}
  21: {{1},{1,1}}
  22: {{},{3}}
  23: {{2,2}}
  24: {{},{},{},{1}}
  26: {{},{1,2}}
  28: {{},{},{1,1}}
  29: {{1,3}}
		

Crossrefs

Complement of A076610 (products of primes of prime index).
Numbers n such that A330944(n) > 0.
The restriction to odd terms is A330946.
The restriction to nonprimes is A330948.
The number of prime prime indices is given by A257994.
The number of nonprime prime indices is given by A330944.
Primes of prime index are A006450.
Primes of nonprime index are A007821.
Products of primes of nonprime index are A320628.
The set S of numbers whose prime indices do not all belong to S is A324694.

Programs

  • Mathematica
    Select[Range[100],!And@@PrimeQ/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]&]

A302590 Squarefree numbers whose prime indices are prime numbers.

Original entry on oeis.org

1, 3, 5, 11, 15, 17, 31, 33, 41, 51, 55, 59, 67, 83, 85, 93, 109, 123, 127, 155, 157, 165, 177, 179, 187, 191, 201, 205, 211, 241, 249, 255, 277, 283, 295, 327, 331, 335, 341, 353, 367, 381, 401, 415, 431, 451, 461, 465, 471, 509, 527, 537, 545, 547, 561, 563
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.
From David A. Corneth, Feb 05 2021: (Start)
Product_{p in A006450} (p + 1)/p where primepi(p) <= 10^k for k = 3..9 respectively is
2.3221793975627545730894469494385382768...
2.3962097386916566795581118542505513350...
2.4423525010102788492232765893521739629...
2.4739349879225654126399615785205666552...
2.4969363158706022367680967716958174889...
2.5144436325229538304870684054018856517...
2.5282263225826916578696019016723107071... (End)

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
001: {}
003: {{1}}
005: {{2}}
011: {{3}}
015: {{1},{2}}
017: {{4}}
031: {{5}}
033: {{1},{3}}
041: {{6}}
051: {{1},{4}}
055: {{2},{3}}
059: {{7}}
067: {{8}}
083: {{9}}
085: {{2},{4}}
093: {{1},{5}}
109: {{10}}
123: {{1},{6}}
127: {{11}}
155: {{2},{5}}
157: {{12}}
165: {{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[600],SquareFreeQ[#]&&And@@PrimeQ/@primeMS[#]&]
  • PARI
    ok(n)={issquarefree(n) && !#select(p->!isprime(primepi(p)), factor(n)[,1])} \\ Andrew Howroyd, Aug 26 2018

Formula

Intersection of A005117 and A076610.
Sum_{n>=1} 1/a(n) = Product_{p in A006450} (1 + 1/p) converges since the sum of the reciprocals of A006450 converges. - Amiram Eldar, Feb 02 2021

A331915 Numbers with exactly one prime prime index, counted with multiplicity.

Original entry on oeis.org

3, 5, 6, 10, 11, 12, 17, 20, 21, 22, 24, 31, 34, 35, 39, 40, 41, 42, 44, 48, 57, 59, 62, 65, 67, 68, 69, 70, 77, 78, 80, 82, 83, 84, 87, 88, 95, 96, 109, 111, 114, 115, 118, 119, 124, 127, 129, 130, 134, 136, 138, 140, 141, 143, 145, 147, 154, 156, 157, 159
Offset: 1

Views

Author

Gus Wiseman, Feb 08 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
    3: {2}             57: {2,8}            114: {1,2,8}
    5: {3}             59: {17}             115: {3,9}
    6: {1,2}           62: {1,11}           118: {1,17}
   10: {1,3}           65: {3,6}            119: {4,7}
   11: {5}             67: {19}             124: {1,1,11}
   12: {1,1,2}         68: {1,1,7}          127: {31}
   17: {7}             69: {2,9}            129: {2,14}
   20: {1,1,3}         70: {1,3,4}          130: {1,3,6}
   21: {2,4}           77: {4,5}            134: {1,19}
   22: {1,5}           78: {1,2,6}          136: {1,1,1,7}
   24: {1,1,1,2}       80: {1,1,1,1,3}      138: {1,2,9}
   31: {11}            82: {1,13}           140: {1,1,3,4}
   34: {1,7}           83: {23}             141: {2,15}
   35: {3,4}           84: {1,1,2,4}        143: {5,6}
   39: {2,6}           87: {2,10}           145: {3,10}
   40: {1,1,1,3}       88: {1,1,1,5}        147: {2,4,4}
   41: {13}            95: {3,8}            154: {1,4,5}
   42: {1,2,4}         96: {1,1,1,1,1,2}    156: {1,1,2,6}
   44: {1,1,5}        109: {29}             157: {37}
   48: {1,1,1,1,2}    111: {2,12}           159: {2,16}
		

Crossrefs

These are numbers n such that A257994(n) = 1.
Prime-indexed primes are A006450, with products A076610.
The number of distinct prime prime indices is A279952.
Numbers with at least one prime prime index are A331386.
The set S of numbers with exactly one prime index in S are A331785.
The set S of numbers with exactly one distinct prime index in S are A331913.
Numbers with at most one prime prime index are A331914.
Numbers with exactly one distinct prime prime index are A331916.
Numbers with at most one distinct prime prime index are A331995.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Count[primeMS[#],_?PrimeQ]==1&]

A049079 Primes prime(k) for which A049076(k) = 3.

Original entry on oeis.org

5, 59, 179, 331, 431, 599, 919, 1153, 1297, 1523, 1847, 2381, 2477, 2749, 3259, 3637, 3943, 4091, 4273, 4549, 5623, 5869, 6113, 6661, 6823, 7607, 7841, 8221, 8719, 9461, 9739, 9859, 11743, 11953, 12097, 12301, 12547, 13469, 13709, 14177, 14723, 14867
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Extensions

Definition edited by Zak Seidov, Sep 15 2013

A302540 Numbers whose prime indices other than 1 are prime numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 15, 16, 17, 18, 20, 22, 24, 25, 27, 30, 31, 32, 33, 34, 36, 40, 41, 44, 45, 48, 50, 51, 54, 55, 59, 60, 62, 64, 66, 67, 68, 72, 75, 80, 81, 82, 83, 85, 88, 90, 93, 96, 99, 100, 102, 108, 109, 110, 118, 120, 121, 123, 124
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Crossrefs

Programs

  • Mathematica
    Select[Range[400],#===1||And@@(#===1||PrimeQ[#]&)/@PrimePi/@FactorInteger[#][[All,1]]&]
  • PARI
    ok(n)={!#select(p->p>2 && !isprime(primepi(p)), factor(n)[,1])} \\ Andrew Howroyd, Aug 26 2018

Formula

Sum_{n>=1} 1/a(n) = 2 * Sum_{n>=1} 1/A076610(n) = 2 * Product_{p in A006450} p/(p-1) converges since the sum of the reciprocals of A006450 converges. - Amiram Eldar, Feb 02 2021

A049090 Primes for which A049076 >= 4.

Original entry on oeis.org

11, 31, 127, 277, 709, 1063, 1787, 2221, 3001, 4397, 5381, 7193, 8527, 9319, 10631, 12763, 15299, 15823, 19577, 21179, 22093, 24859, 27457, 30133, 33967, 37217, 38833, 40819, 42043, 43651, 52711, 55351, 57943, 60647, 66851, 68639, 72727
Offset: 1

Views

Author

Keywords

Comments

Union of A049080, A049081, A058322, A058324, etc. - R. J. Mathar, Jul 07 2012

Crossrefs

Programs

  • Maple
    map(ithprime@@3, select(isprime, [$1..157])); # Peter Luschny, Feb 17 2014
  • Mathematica
    Nest[ Prime, Range[40], 4] (* Robert G. Wilson v, Mar 15 2004 *)
  • PARI
    list(lim)=my(v=List(),q,r,s); forprime(p=2,lim,if(isprime(q++)&&isprime(r++)&&isprime(s++),listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Feb 16 2017

Formula

a(n) = A006450(A006450(n)). - James G. Merickel, Feb 14 2010
a(n) = A000040(A038580(n)). - R. J. Mathar, Jul 07 2012
a(n) ~ n (log n)^4. - Charles R Greathouse IV, Feb 16 2017

Extensions

Name corrected by Sean A. Irvine, Jul 18 2021
Previous Showing 21-30 of 270 results. Next