A330944
Number of nonprime prime indices of n.
Original entry on oeis.org
0, 1, 0, 2, 0, 1, 1, 3, 0, 1, 0, 2, 1, 2, 0, 4, 0, 1, 1, 2, 1, 1, 1, 3, 0, 2, 0, 3, 1, 1, 0, 5, 0, 1, 1, 2, 1, 2, 1, 3, 0, 2, 1, 2, 0, 2, 1, 4, 2, 1, 0, 3, 1, 1, 0, 4, 1, 2, 0, 2, 1, 1, 1, 6, 1, 1, 0, 2, 1, 2, 1, 3, 1, 2, 0, 3, 1, 2, 1, 4, 0, 1, 0, 3, 0, 2, 1
Offset: 1
24 has prime indices {1,1,1,2}, of which {1,1,1} are nonprime, so a(24) = 3.
The number of prime prime indices is given by
A257994.
Primes of nonprime index are
A007821.
Products of primes of prime index are
A076610.
Products of primes of nonprime index are
A320628.
Numbers whose prime indices are not all prime are
A330945.
Cf.
A000040,
A000720,
A001222,
A007097,
A018252,
A056239,
A112798,
A302242,
A320629,
A320633,
A330946,
A330947.
-
Table[Total[Cases[If[n==1,{},FactorInteger[n]],{p_,k_}/;!PrimeQ[PrimePi[p]]:>k]],{n,30}]
-
a(n) = my(f=factor(n)); sum(k=1, #f~, if(!isprime(primepi(f[k,1])), f[k,2], 0)); \\ Daniel Suteu, Jan 14 2020
A049081
Primes prime(k) for which A049076(k) = 5.
Original entry on oeis.org
31, 1787, 8527, 19577, 27457, 42043, 72727, 96797, 112129, 137077, 173867, 239489, 250751, 285191, 352007, 401519, 443419, 464939, 490643, 527623, 683873, 718807, 755387, 839483, 864013, 985151, 1021271, 1080923, 1159901, 1278779
Offset: 1
Cf.
A049076,
A007821,
A049078,
A049079,
A049080,
A058322,
A058324,
A058325,
A058326,
A058327,
A058328,
A093046,
A006450.
A320629
Products of odd primes of nonprime index.
Original entry on oeis.org
1, 7, 13, 19, 23, 29, 37, 43, 47, 49, 53, 61, 71, 73, 79, 89, 91, 97, 101, 103, 107, 113, 131, 133, 137, 139, 149, 151, 161, 163, 167, 169, 173, 181, 193, 197, 199, 203, 223, 227, 229, 233, 239, 247, 251, 257, 259, 263, 269, 271, 281, 293, 299, 301, 307, 311
Offset: 1
The sequence of terms begins:
1 = 1
7 = prime(4)
13 = prime(6)
19 = prime(8)
23 = prime(9)
29 = prime(10)
37 = prime(12)
43 = prime(14)
47 = prime(15)
49 = prime(4)^2
53 = prime(16)
61 = prime(18)
71 = prime(20)
73 = prime(21)
79 = prime(22)
89 = prime(24)
91 = prime(4)*prime(6)
97 = prime(25)
101 = prime(26)
103 = prime(27)
107 = prime(28)
113 = prime(30)
131 = prime(32)
133 = prime(4)*prime(8)
137 = prime(33)
139 = prime(34)
149 = prime(35)
151 = prime(36)
161 = prime(4)*prime(9)
Cf.
A000040,
A006450,
A007821,
A018252,
A056239,
A076610,
A112798,
A302242,
A320533,
A320628,
A320630,
A320631,
A320633.
A064988
Multiplicative with a(p^e) = prime(p)^e.
Original entry on oeis.org
1, 3, 5, 9, 11, 15, 17, 27, 25, 33, 31, 45, 41, 51, 55, 81, 59, 75, 67, 99, 85, 93, 83, 135, 121, 123, 125, 153, 109, 165, 127, 243, 155, 177, 187, 225, 157, 201, 205, 297, 179, 255, 191, 279, 275, 249, 211, 405, 289, 363, 295, 369, 241, 375, 341, 459, 335, 327
Offset: 1
a(12) = a(2^2*3) = prime(2)^2 * prime(3) = 3^2*5 = 45, where prime(n) = A000040(n).
Cf.
A076610 (terms sorted into ascending order).
-
a:= n-> mul(ithprime(i[1])^i[2], i=ifactors(n)[2]):
seq(a(n), n=1..70); # Alois P. Heinz, Sep 06 2018
-
Table[If[n == 1, 1, Apply[Times, FactorInteger[n] /. {p_, e_} /; p > 1 :> Prime[p]^e]], {n, 58}] (* Michael De Vlieger, Aug 22 2017 *)
-
{ for (n=1, 1000, f=factor(n)~; a=1; for (i=1, length(f), a*=prime(f[1, i])^f[2, i]); write("b064988.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 02 2009
-
a(n) = {my(f = factor(n)); for (k=1, #f~, f[k, 1] = prime(f[k, 1]);); factorback(f);} \\ Michel Marcus, Aug 08 2017
-
from sympy import factorint, prime
from operator import mul
def a(n): return 1 if n==1 else reduce(mul, [prime(p)**e for p, e in factorint(n).items()])
print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Aug 08 2017
-
(define (A064988 n) (if (= 1 n) n (* (A000040 (A020639 n)) (A064988 (A032742 n))))) ;; Antti Karttunen, Aug 08 2017
A330945
Numbers whose prime indices are not all prime numbers.
Original entry on oeis.org
2, 4, 6, 7, 8, 10, 12, 13, 14, 16, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 32, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 82, 84, 86, 87
Offset: 1
The sequence of terms together with their prime indices of prime indices begins:
2: {{}}
4: {{},{}}
6: {{},{1}}
7: {{1,1}}
8: {{},{},{}}
10: {{},{2}}
12: {{},{},{1}}
13: {{1,2}}
14: {{},{1,1}}
16: {{},{},{},{}}
18: {{},{1},{1}}
19: {{1,1,1}}
20: {{},{},{2}}
21: {{1},{1,1}}
22: {{},{3}}
23: {{2,2}}
24: {{},{},{},{1}}
26: {{},{1,2}}
28: {{},{},{1,1}}
29: {{1,3}}
Complement of
A076610 (products of primes of prime index).
Numbers n such that
A330944(n) > 0.
The restriction to odd terms is
A330946.
The restriction to nonprimes is
A330948.
The number of prime prime indices is given by
A257994.
The number of nonprime prime indices is given by
A330944.
Primes of nonprime index are
A007821.
Products of primes of nonprime index are
A320628.
The set S of numbers whose prime indices do not all belong to S is
A324694.
Cf.
A000040,
A000720,
A001222,
A018252,
A056239,
A112798,
A302242,
A320633,
A330943,
A330947,
A330949.
A302590
Squarefree numbers whose prime indices are prime numbers.
Original entry on oeis.org
1, 3, 5, 11, 15, 17, 31, 33, 41, 51, 55, 59, 67, 83, 85, 93, 109, 123, 127, 155, 157, 165, 177, 179, 187, 191, 201, 205, 211, 241, 249, 255, 277, 283, 295, 327, 331, 335, 341, 353, 367, 381, 401, 415, 431, 451, 461, 465, 471, 509, 527, 537, 545, 547, 561, 563
Offset: 1
Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of set systems.
001: {}
003: {{1}}
005: {{2}}
011: {{3}}
015: {{1},{2}}
017: {{4}}
031: {{5}}
033: {{1},{3}}
041: {{6}}
051: {{1},{4}}
055: {{2},{3}}
059: {{7}}
067: {{8}}
083: {{9}}
085: {{2},{4}}
093: {{1},{5}}
109: {{10}}
123: {{1},{6}}
127: {{11}}
155: {{2},{5}}
157: {{12}}
165: {{1},{2},{3}}
Cf.
A000961,
A001222,
A003963,
A005117,
A006450,
A007716,
A056239,
A076610,
A275024,
A281113,
A302242,
A302243,
A302568.
-
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[600],SquareFreeQ[#]&&And@@PrimeQ/@primeMS[#]&]
-
ok(n)={issquarefree(n) && !#select(p->!isprime(primepi(p)), factor(n)[,1])} \\ Andrew Howroyd, Aug 26 2018
A331915
Numbers with exactly one prime prime index, counted with multiplicity.
Original entry on oeis.org
3, 5, 6, 10, 11, 12, 17, 20, 21, 22, 24, 31, 34, 35, 39, 40, 41, 42, 44, 48, 57, 59, 62, 65, 67, 68, 69, 70, 77, 78, 80, 82, 83, 84, 87, 88, 95, 96, 109, 111, 114, 115, 118, 119, 124, 127, 129, 130, 134, 136, 138, 140, 141, 143, 145, 147, 154, 156, 157, 159
Offset: 1
The sequence of terms together with their prime indices begins:
3: {2} 57: {2,8} 114: {1,2,8}
5: {3} 59: {17} 115: {3,9}
6: {1,2} 62: {1,11} 118: {1,17}
10: {1,3} 65: {3,6} 119: {4,7}
11: {5} 67: {19} 124: {1,1,11}
12: {1,1,2} 68: {1,1,7} 127: {31}
17: {7} 69: {2,9} 129: {2,14}
20: {1,1,3} 70: {1,3,4} 130: {1,3,6}
21: {2,4} 77: {4,5} 134: {1,19}
22: {1,5} 78: {1,2,6} 136: {1,1,1,7}
24: {1,1,1,2} 80: {1,1,1,1,3} 138: {1,2,9}
31: {11} 82: {1,13} 140: {1,1,3,4}
34: {1,7} 83: {23} 141: {2,15}
35: {3,4} 84: {1,1,2,4} 143: {5,6}
39: {2,6} 87: {2,10} 145: {3,10}
40: {1,1,1,3} 88: {1,1,1,5} 147: {2,4,4}
41: {13} 95: {3,8} 154: {1,4,5}
42: {1,2,4} 96: {1,1,1,1,1,2} 156: {1,1,2,6}
44: {1,1,5} 109: {29} 157: {37}
48: {1,1,1,1,2} 111: {2,12} 159: {2,16}
These are numbers n such that
A257994(n) = 1.
The number of distinct prime prime indices is
A279952.
Numbers with at least one prime prime index are
A331386.
The set S of numbers with exactly one prime index in S are
A331785.
The set S of numbers with exactly one distinct prime index in S are
A331913.
Numbers with at most one prime prime index are
A331914.
Numbers with exactly one distinct prime prime index are
A331916.
Numbers with at most one distinct prime prime index are
A331995.
Cf.
A000040,
A000720,
A007097,
A007821,
A018252,
A112798,
A289509,
A320628,
A330944,
A330945,
A331784.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Count[primeMS[#],_?PrimeQ]==1&]
A049079
Primes prime(k) for which A049076(k) = 3.
Original entry on oeis.org
5, 59, 179, 331, 431, 599, 919, 1153, 1297, 1523, 1847, 2381, 2477, 2749, 3259, 3637, 3943, 4091, 4273, 4549, 5623, 5869, 6113, 6661, 6823, 7607, 7841, 8221, 8719, 9461, 9739, 9859, 11743, 11953, 12097, 12301, 12547, 13469, 13709, 14177, 14723, 14867
Offset: 1
Cf.
A049076,
A007821,
A049078,
A049080,
A049081,
A058322,
A058324,
A058325,
A058326,
A058327,
A058328,
A093046,
A006450.
A302540
Numbers whose prime indices other than 1 are prime numbers.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 15, 16, 17, 18, 20, 22, 24, 25, 27, 30, 31, 32, 33, 34, 36, 40, 41, 44, 45, 48, 50, 51, 54, 55, 59, 60, 62, 64, 66, 67, 68, 72, 75, 80, 81, 82, 83, 85, 88, 90, 93, 96, 99, 100, 102, 108, 109, 110, 118, 120, 121, 123, 124
Offset: 1
Cf.
A000961,
A001222,
A003963,
A005117,
A006450,
A007716,
A056239,
A076610,
A275024,
A281113,
A291686,
A302242,
A302243,
A302534,
A302539.
-
Select[Range[400],#===1||And@@(#===1||PrimeQ[#]&)/@PrimePi/@FactorInteger[#][[All,1]]&]
-
ok(n)={!#select(p->p>2 && !isprime(primepi(p)), factor(n)[,1])} \\ Andrew Howroyd, Aug 26 2018
Original entry on oeis.org
11, 31, 127, 277, 709, 1063, 1787, 2221, 3001, 4397, 5381, 7193, 8527, 9319, 10631, 12763, 15299, 15823, 19577, 21179, 22093, 24859, 27457, 30133, 33967, 37217, 38833, 40819, 42043, 43651, 52711, 55351, 57943, 60647, 66851, 68639, 72727
Offset: 1
- Michael De Vlieger, Table of n, a(n) for n = 1..10000 (first 1000 terms from Robert G. Wilson v)
- R. G. Batchko, A prime fractal and global quasi-self-similar structure in the distribution of prime-indexed primes, arXiv preprint arXiv:1405.2900 [math.GM], 2014.
- N. Fernandez, An order of primeness, F(p)
- N. Fernandez, An order of primeness [cached copy, included with permission of the author]
- N. Fernandez, More terms of this and other sequences related to A049076.
Cf.
A000040,
A006450,
A038580,
A049076,
A049202,
A049203,
A057847,
A057849,
A057850,
A057851,
A058332,
A093047.
-
map(ithprime@@3, select(isprime, [$1..157])); # Peter Luschny, Feb 17 2014
-
Nest[ Prime, Range[40], 4] (* Robert G. Wilson v, Mar 15 2004 *)
-
list(lim)=my(v=List(),q,r,s); forprime(p=2,lim,if(isprime(q++)&&isprime(r++)&&isprime(s++),listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Feb 16 2017
Comments