cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 45 results. Next

A090310 a(n) = 21*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 21.

Original entry on oeis.org

2, 21, 443, 9324, 196247, 4130511, 86936978, 1829807049, 38512885007, 810600392196, 17061121121123, 359094143935779, 7558038143772482, 159077895163157901, 3348193836570088403, 70471148463135014364
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004

Keywords

Comments

Lim_{n-> infinity} a(n)/a(n+1) = 0.0475115... = 2/(21+sqrt(445)) = (sqrt(445)-21)/2.
Lim_{n-> infinity} a(n+1)/a(n) = 21.0475115... = (21+sqrt(445))/2 = 2/(sqrt(445)-21).
a(2) = 443 divides a(14) = 3348193836570088403. Does this relate to the sequence being the (21,1)-weighted Fibonacci sequence with seed (2,21) and both 14 and 21 being multiples of 7? Primes in this sequence include: a(0) = 2, a(2) = 443, a(4) = 196247 Semiprimes in this sequence include: a(8) = 38512885007 = 97967 * 393121, a(14) = 3348193836570088403 = 443 * 7557999631083721. - Jonathan Vos Post, Feb 10 2005

Examples

			a(4) = 21*a(3) + a(2) = 21*9324 + 443 = ((21+sqrt(445))/2)^4 + ((21-sqrt(445))/2)^4 = 196246.9999949043 + 0.0000050956 = 196247.
		

Crossrefs

Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), A090305 (m=16), A090306 (m=17), A090307 (m=18), A090308 (m=19), A090309 (m=20), this sequence (m=21), A090313 (m=22), A090314 (m=23), A090316 (m=24), A330767 (m=25).

Programs

  • GAP
    m:=21;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 30 2019
  • Magma
    m:=21; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 30 2019
    
  • Maple
    seq(simplify(2*(-I)^n*ChebyshevT(n, 21*I/2)), n = 0..20); # G. C. Greubel, Dec 30 2019
  • Mathematica
    LinearRecurrence[{21,1},{2,21},40] (* or *) CoefficientList[ Series[ (2-21x)/(1-21x-x^2),{x,0,40}],x]  (* Harvey P. Dale, Apr 24 2011 *)
    LucasL[Range[20]-1,21] (* G. C. Greubel, Dec 30 2019 *)
  • PARI
    vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 21*I/2) ) \\ G. C. Greubel, Dec 30 2019
    
  • Sage
    [2*(-I)^n*chebyshev_T(n, 21*I/2) for n in (0..20)] # G. C. Greubel, Dec 30 2019
    

Formula

a(n) = 21*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 21.
a(n) = ((21+sqrt(445))/2)^n + ((21-sqrt(445))/2)^n.
(a(n))^2 = a(2n) - 2 if n=1, 3, 5... .
(a(n))^2 = a(2n) + 2 if n=2, 4, 6... .
G.f.: (2-21*x)/(1-21*x-x^2). - Philippe Deléham, Nov 02 2008
a(n) = Lucas(n, 21) = 2*(-i)^n * ChebyshevT(n, 21*i/2). - G. C. Greubel, Dec 30 2019

Extensions

More terms from Ray Chandler, Feb 14 2004

A090305 a(n) = 16*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 16.

Original entry on oeis.org

2, 16, 258, 4144, 66562, 1069136, 17172738, 275832944, 4430499842, 71163830416, 1143051786498, 18359992414384, 294902930416642, 4736806879080656, 76083812995707138, 1222077814810394864, 19629328849962024962
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004

Keywords

Comments

Lim_{n-> infinity} a(n)/a(n+1) = 0.0622577... = 1/(8+sqrt(65)) = (sqrt(65)-8).
Lim_{n-> infinity} a(n+1)/a(n) = 16.0622577... = (8+sqrt(65)) = 1/(sqrt(65)-8).

Examples

			a(4) = 16*a(3) + a(2) = 16*4144 + 258 = (8+sqrt(65))^4 + (8-sqrt(65))^4 = 66561.99998497... + 0.00001502... = 66562.
		

Crossrefs

Lucas polynomials: A114525.
Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), this sequence (m=16), A090306 (m=17), A090307 (m=18), A090308 (m=19), A090309 (m=20), A090310 (m=21), A090313 (m=22), A090314 (m=23), A090316 (m=24), A330767 (m=25), A087281 (m=29), A087287 (m=76), A089772 (m=199).

Programs

  • GAP
    m:=16;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 31 2019
  • Magma
    m:=16; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 31 2019
    
  • Maple
    seq(simplify(2*(-I)^n*ChebyshevT(n, 8*I)), n = 0..20); # G. C. Greubel, Dec 31 2019
  • Mathematica
    LinearRecurrence[{16,1},{2,16},40] (* or *) With[{c=Sqrt[65]}, Simplify/@ Table[(c-8)((8+c)^n-(8-c)^n (129+16c)),{n,20}]] (* Harvey P. Dale, Oct 31 2011 *)
    LucasL[Range[20]-1, 16] (* G. C. Greubel, Dec 31 2019 *)
  • PARI
    vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 8*I) ) \\ G. C. Greubel, Dec 31 2019
    
  • Sage
    [2*(-I)^n*chebyshev_T(n, 8*I) for n in (0..20)] # G. C. Greubel, Dec 31 2019
    

Formula

a(n) = 16*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 16.
a(n) = (8+sqrt(65))^n + (8-sqrt(65))^n.
a(n)^2 = a(2n) - 2 if n = 1, 3, 5, ...;
a(n)^2 = a(2n) + 2 if n = 2, 4, 6, ....
G.f.: (2-16*x)/(1-16*x-x^2). - Philippe Deléham, Nov 02 2008
a(n) = Lucas(n, 16) = 2*(-i)^n * ChebyshevT(n, 8*i). - G. C. Greubel, Dec 31 2019
E.g.f.: 2*exp(8*x)*cosh(sqrt(65)*x). - Stefano Spezia, Jan 01 2020

Extensions

More terms from Ray Chandler, Feb 14 2004

A090307 a(n) = 18*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 18.

Original entry on oeis.org

2, 18, 326, 5886, 106274, 1918818, 34644998, 625528782, 11294163074, 203920464114, 3681862517126, 66477445772382, 1200275886420002, 21671443401332418, 391286257110403526, 7064824071388595886
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004

Keywords

Comments

Lim_{n-> infinity} a(n)/a(n+1) = 0.0553851... = 1/(9+sqrt(82)) = (sqrt(82)-9).
Lim_{n-> infinity} a(n+1)/a(n) = 18.0553851... = (9+sqrt(82)) = 1/(sqrt(82)-9).

Examples

			a(4) = 18*a(3) + a(2) = 18*5886 + 326 = (9+sqrt(82))^4 + (9-sqrt(82))^4 = 106273.9999905903 + 0.000009406 = 106274.
		

Crossrefs

Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), A090305 (m=16), A090306 (m=17), this sequence (m=18), A090308 (m=19), A090309 (m=20), A090310 (m=21), A090313 (m=22), A090314 (m=23), A090316 (m=24), A330767 (m=25).

Programs

  • GAP
    m:=18;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 30 2019
  • Magma
    m:=18; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 30 2019
    
  • Maple
    seq(simplify(2*(-I)^n*ChebyshevT(n, 9*I)), n = 0..20); # G. C. Greubel, Dec 30 2019
  • Mathematica
    LinearRecurrence[{18,1},{2,18},25] (* or *) CoefficientList[ Series[ (2-18x)/(1-18x-x^2),{x,0,25}],x] (* Harvey P. Dale, Apr 22 2011 *)
    LucasL[Range[20]-1, 18] (* G. C. Greubel, Dec 30 2019 *)
  • PARI
    vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 9*I) ) \\ G. C. Greubel, Dec 30 2019
    
  • Sage
    [2*(-I)^n*chebyshev_T(n, 9*I) for n in (0..20)] # G. C. Greubel, Dec 30 2019
    

Formula

a(n) = 18*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 18.
a(n) = (9+sqrt(82))^n + (9-sqrt(82))^n.
(a(n))^2 = a(2n) - 2 if n=1, 3, 5, ...
(a(n))^2 = a(2n) + 2 if n=2, 4, 6, ...
G.f.: (2-18*x)/(1-18*x-x^2). - Philippe Deléham, Nov 02 2008
a(n) = Lucas(n, 18) = 2*(-i)^n * ChebyshevT(n, 9*i). - G. C. Greubel, Dec 30 2019
E.g.f.: 2*exp(9*x)*cosh(sqrt(82)*x). - Stefano Spezia, Dec 31 2019

Extensions

More terms from Ray Chandler, Feb 14 2004

A090308 a(n) = 19*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 19.

Original entry on oeis.org

2, 19, 363, 6916, 131767, 2510489, 47831058, 911300591, 17362542287, 330799604044, 6302555019123, 120079344967381, 2287810109399362, 43588471423555259, 830468767156949283, 15822495047405591636
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004

Keywords

Comments

Lim_{n-> infinity} a(n)/a(n+1) = 0.052486... = 2/(19+sqrt(365)) = (sqrt(365)-19)/2.
Lim_{n-> infinity} a(n+1)/a(n) = 19.052486... = (19+sqrt(365))/2 = 2/(sqrt(365)-19).

Examples

			a(4) = 19*a(3) + a(2) = 19*6916 + 363 = ((19+sqrt(365))/2)^4 + ((19-sqrt(365))/2)^4 = 131766.9999924108 + 0.0000075891 = 131767.
		

Crossrefs

Cf. A049270.
Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), A090305 (m=16), A090306 (m=17), A090307 (m=18), this sequence (m=19), A090309 (m=20), A090310 (m=21), A090313 (m=22), A090314 (m=23), A090316 (m=24), A330767 (m=25).

Programs

  • GAP
    m:=19;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 30 2019
  • Magma
    m:=19; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 30 2019
    
  • Maple
    seq(simplify(2*(-I)^n*ChebyshevT(n, 19*I/2)), n = 0..20); # G. C. Greubel, Dec 30 2019
  • Mathematica
    LucasL[Range[20]-1,20] (* G. C. Greubel, Dec 30 2019 *)
  • PARI
    vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 19*I/2) ) \\ G. C. Greubel, Dec 30 2019
    
  • Sage
    [2*(-I)^n*chebyshev_T(n, 19*I/2) for n in (0..20)] # G. C. Greubel, Dec 30 2019
    

Formula

a(n) = 19*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 19.
a(n) = ((19+sqrt(365))/2)^n + ((19-sqrt(365))/2)^n.
(a(n))^2 = a(2n) - 2 if n=1, 3, 5....
(a(n))^2 = a(2n) + 2 if n=2, 4, 6....
G.f.: (2-19*x)/(1-19*x-x^2). - Philippe Deléham, Nov 02 2008
a(n) = Lucas(n, 19) = 2*(-i)^n * ChebyshevT(n, 19*i/2). - G. C. Greubel, Dec 30 2019

Extensions

More terms from Ray Chandler, Feb 14 2004

A090313 a(n) = 22*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 22.

Original entry on oeis.org

2, 22, 486, 10714, 236194, 5206982, 114789798, 2530582538, 55787605634, 1229857906486, 27112661548326, 597708411969658, 13176697724880802, 290485058359347302, 6403847981630521446, 141175140654230819114
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004

Keywords

Comments

Lim_{n-> infinity} a(n)/a(n+1) = 0.045361... = 1/(11+sqrt(122)) = (sqrt(122)-11).
Lim_{n-> infinity} a(n+1)/a(n) = 22.045361... = (11+sqrt(122)) = 1/(sqrt(122)-11).

Examples

			a(4) = 236194 = 22*a(3) + a(2) = 22*10714 + 486 = (11 + sqrt(122))^4 + (11 - sqrt(122))^4 = 236193.999995766 + 0.000004233 = 236194.
		

Crossrefs

Cf. A079219.
Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), A090305 (m=16), A090306 (m=17), A090307 (m=18), A090308 (m=19), A090309 (m=20), A090310 (m=21), this sequence (m=22), A090314 (m=23), A090316 (m=24), A330767 (m=25).

Programs

  • GAP
    m:=22;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 30 2019
  • Magma
    m:=22; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 30 2019
    
  • Maple
    seq(simplify(2*(-I)^n*ChebyshevT(n, 11*I)), n = 0..20); # G. C. Greubel, Dec 30 2019
  • Mathematica
    LucasL[Range[20]-1,22] (* G. C. Greubel, Dec 29 2019 *)
  • PARI
    vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 11*I) ) \\ G. C. Greubel, Dec 30 2019
    
  • Sage
    [2*(-I)^n*chebyshev_T(n, 11*I) for n in (0..20)] # G. C. Greubel, Dec 30 2019
    

Formula

a(n) = 22*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 22.
a(n) = (11+sqrt(122))^n + (11-sqrt(122))^n.
(a(n))^2 = a(2n) - 2 if n=1, 3, 5...,
(a(n))^2 = a(2n) + 2 if n=2, 4, 6....
G.f.: (2-22*x)/(1-22*x-x^2). - Philippe Deléham, Nov 02 2008
a(n) = Lucas(n, 22) = 2*(-i)^n * ChebyshevT(n, 11*i). - G. C. Greubel, Dec 30 2019

Extensions

More terms from Ray Chandler, Feb 14 2004

A090314 a(n) = 23*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 23.

Original entry on oeis.org

2, 23, 531, 12236, 281959, 6497293, 149719698, 3450050347, 79500877679, 1831970236964, 42214816327851, 972772745777537, 22415987969211202, 516540496037635183, 11902847396834820411, 274282030623238504636, 6320389551731320427039, 145643241720443608326533, 3356114949121934311937298
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004

Keywords

Comments

Lim_{n -> infinity} a(n)/a(n+1) = 0.04339638... = 2/(23+sqrt(533)) = (sqrt(533)-23)/2.
Lim_{n -> infinity} a(n+1)/a(n) = 23.04339638... = (23+sqrt(533))/2 = 2/(sqrt(533) - 23).

Examples

			a(4) = 281959 = 23*a(3) + a(2) = 23*12236 + 531 = ((23 + sqrt(533))/2)^4 + ((23 - sqrt(533))/2)^4 = 281958.999996453 + 0.000003546 = 281959.
		

Crossrefs

Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), A090305 (m=16), A090306 (m=17), A090307 (m=18), A090308 (m=19), A090309 (m=20), A090310 (m=21), A090313 (m=22), this sequence (m=23), A090316 (m=24), A330767 (m=25).

Programs

  • GAP
    a:=[2,23];; for n in [3..20] do a[n]:=23*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 29 2019
  • Magma
    I:=[2,23]; [n le 2 select I[n] else 23*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 29 2019
    
  • Maple
    seq(simplify(2*(-I)^n*ChebyshevT(n, 23*I/2)), n = 0..20); # G. C. Greubel, Dec 29 2019
  • Mathematica
    LinearRecurrence[{23,1},{2,23},20] (* Harvey P. Dale, Jul 11 2014 *)
    LucasL[Range[20]-1,23] (* G. C. Greubel, Dec 29 2019 *)
  • PARI
    vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 23*I/2) ) \\ G. C. Greubel, Dec 29 2019
    
  • Sage
    [2*(-I)^n*chebyshev_T(n, 23*I/2) for n in (0..20)] # G. C. Greubel, Dec 29 2019
    

Formula

a(n) = 23*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 23.
a(n) = ((23 + sqrt(533))/2)^n + ((23 - sqrt(533))/2)^n.
(a(n))^2 = a(2n) - 2 if n=1, 3, 5....
(a(n))^2 = a(2n) + 2 if n=2, 4, 6....
G.f.: (2-23*x)/(1-23*x-x^2). - Philippe Deléham, Nov 02 2008
a(n) = Lucas(n, 23) = 2*(-i)^n * ChebyshevT(n, 23*i/2). - G. C. Greubel, Dec 29 2019

Extensions

More terms from Ray Chandler, Feb 14 2004
Terms a(16) onward added by G. C. Greubel, Dec 29 2019

A090316 a(n) = 24*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 24.

Original entry on oeis.org

2, 24, 578, 13896, 334082, 8031864, 193098818, 4642403496, 111610782722, 2683301188824, 64510839314498, 1550943444736776, 37287153512997122, 896442627756667704, 21551910219673022018, 518142287899909196136, 12456966819817493729282, 299485345963519758698904
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004

Keywords

Comments

Lim_{n->infinity} a(n)/a(n+1) = 0.0415945... = 1/(12+sqrt(145)) = sqrt(145) - 12.
Lim_{n->infinity} a(n+1)/a(n) = 24.0415945... = 12+sqrt(145) = 1/(sqrt(145)-12).

Examples

			a(4) =334082 = 24a(3) + a(2) = 24*13896+ 578 = (12+sqrt(145))^4 + (12-sqrt(145))^4 = 334081.99999700672 + 0.00000299327 = 334082.
		

Crossrefs

Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), A090305 (m=16), A090306 (m=17), A090307 (m=18), A090308 (m=19), A090309 (m=20), A090310 (m=21), A090313 (m=22), A090314 (m=23), this sequence (m=24), A330767 (m=25).

Programs

  • GAP
    a:=[2,24];; for n in [3..20] do a[n]:=24*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 29 2019
  • Magma
    I:=[2,24]; [n le 2 select I[n] else 24*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 29 2019
    
  • Maple
    seq(simplify(2*(-I)^n*ChebyshevT(n, 12*I)), n = 0..20); # G. C. Greubel, Dec 29 2019
  • Mathematica
    LinearRecurrence[{24,1},{2,24},20] (* Harvey P. Dale, Aug 30 2015 *)
    LucasL[Range[20]-1,24] (* G. C. Greubel, Dec 29 2019 *)
  • PARI
    vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 12*I) ) \\ G. C. Greubel, Dec 29 2019
    
  • Sage
    [2*(-I)^n*chebyshev_T(n, 12*I) for n in (0..20)] # G. C. Greubel, Dec 29 2019
    

Formula

a(n) = 24*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 24.
a(n) = (12+sqrt(145))^n + (12-sqrt(145))^n.
(a(n))^2 = a(2n) - 2 if n=1,3,5,..., (a(n))^2 = a(2n)+2 if n=2,4,6,....
G.f.: 2*(1-12*x)/(1-24*x-x^2). - Philippe Deléham, Nov 02 2008
a(n) = 2*(-i)^n * ChebyshevT(n, 12*i) = Lucas(n, 24). - G. C. Greubel, Dec 29 2019
a(n) = 2 * A041264(n-1) for n>0. - Alois P. Heinz, Dec 29 2019

Extensions

More terms from Ray Chandler, Feb 14 2004
Corrected by T. D. Noe, Nov 07 2006

A097783 Chebyshev polynomials S(n,11) + S(n-1,11) with Diophantine property.

Original entry on oeis.org

1, 12, 131, 1429, 15588, 170039, 1854841, 20233212, 220710491, 2407582189, 26262693588, 286482047279, 3125039826481, 34088956044012, 371853476657651, 4056299287190149, 44247438682433988, 482665526219583719, 5265073349732986921, 57433141320843272412
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Comments

All positive integer solutions of Pell equation (3*a(n))^2 - 13*b(n)^2 = -4 together with b(n)=A078922(n+1), n>=0.

Examples

			All positive solutions to the Pell equation x^2 - 13*y^2 = -4 are (3=3*1,1), (36=3*12,10), (393=3*131,109), (4287=3*1429,1189 ), ...
		

Crossrefs

Programs

  • Magma
    I:=[1,12]; [n le 2 select I[n] else 11*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 22 2015
  • Mathematica
    CoefficientList[Series[(1 + x) / (1 - 11 x + x^2), {x, 0, 33}], x] (* Vincenzo Librandi, Mar 22 2015 *)
  • PARI
    Vec((1+x)/(1-11*x+x^2) + O(x^30)) \\ Michel Marcus, Mar 22 2015
    
  • Sage
    [(lucas_number2(n,11,1)-lucas_number2(n-1,11,1))/9 for n in range(1, 19)] # Zerinvary Lajos, Nov 10 2009
    

Formula

a(n) = S(n, 11) + S(n-1, 11) = S(2*n, sqrt(13)), with S(n, x)=U(n, x/2) Chebyshev's polynomials of the 2nd kind, A049310. S(-1, x) = 0 = U(-1, x).
a(n) = (-2/3)*i*((-1)^n)*T(2*n+1, 3*i/2) with the imaginary unit i and Chebyshev's polynomials of the first kind. See the T-triangle A053120.
G.f.: (1+x)/(1-11*x+x^2).
a(n) = L(n,-11)*(-1)^n, where L is defined as in A108299; see also A078922 for L(n,+11). - Reinhard Zumkeller, Jun 01 2005
a(n) = 11*a(n-1) - a(n-2) with a(0)=1 and a(1)=12. - Philippe Deléham, Nov 17 2008
From Peter Bala, Mar 22 2015: (Start)
The aerated sequence (b(n))n>=1 = [1, 0, 12, 0, 131, 0, 1429, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -9, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for the connection with Chebyshev polynomials.
b(n) = 1/2*( (-1)^n - 1 )*F(n,3) + 1/3*( 1 + (-1)^(n+1) )*F(n+1,3), where F(n,x) is the n-th Fibonacci polynomial. The o.g.f. is x*(1 + x^2)/(1 - 11*x^2 + x^4).
Exp( Sum_{n >= 1} 6*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 6*A006190(n)*x^n.
Exp( Sum_{n >= 1} (-6)*b(n)*x^n/n ) = 1 + Sum_{n >= 1} 6*A006190(n)*(-x)^n. Cf. A002315, A004146, A113224 and A192425. (End)
a(n) = A006497(2n+1)/3. - Adam Mohamed, Aug 22 2024

A330767 a(n) = 25*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 25.

Original entry on oeis.org

2, 25, 627, 15700, 393127, 9843875, 246490002, 6172093925, 154548838127, 3869893047100, 96901875015627, 2426416768437775, 60757321085960002, 1521359443917437825, 38094743419021905627, 953889944919465078500, 23885343366405648868127, 598087474105060686781675, 14976072195992922818410002
Offset: 0

Views

Author

G. C. Greubel, Dec 29 2019

Keywords

Crossrefs

Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), A090305 (m=16), A090306 (m=17), A090307 (m=18), A090308 (m=19), A090309 (m=20), A090310 (m=21), A090313 (m=22), A090314 (m=23), A090316 (m=24), this sequence (m=25).

Programs

  • GAP
    a:=[2,25];; for n in [3..25] do a[n]:=25*a[n-1]+a[n-2]; od; a;
  • Magma
    I:=[2,25]; [n le 2 select I[n] else 25*Self(n-1) +Self(n-2): n in [1..25]];
    
  • Maple
    seq(simplify(2*(-I)^n*ChebyshevT(n, 25*I/2)), n = 0..25);
  • Mathematica
    LucasL[Range[25] -1, 25]
  • PARI
    vector(26, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 25*I/2) )
    
  • Sage
    [2*(-I)^n*chebyshev_T(n, 25*I/2) for n in (0..25)]
    

Formula

a(n) = ( (25 + sqrt(629))^n + (25 - sqrt(629))^n )/2^n.
G.f.: (2 - 25*x)/(1-25*x-x^2).
a(n) = Lucas(n, 25) = 2*(-i)^n * ChebyshevT(n, 25*i/2).

A089772 a(n) = Lucas(11*n).

Original entry on oeis.org

2, 199, 39603, 7881196, 1568397607, 312119004989, 62113250390418, 12360848946698171, 2459871053643326447, 489526700523968661124, 97418273275323406890123, 19386725908489881939795601, 3858055874062761829426214722
Offset: 0

Views

Author

Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 09 2004

Keywords

Comments

Lim_{n-> infinity} a(n+1)/a(n) = 199.00502499874... = (199 + sqrt(39605))/2.
Lim_{n->infinity} a(n)/a(n+1) = 0.00502499874... = 2/(199 + sqrt(39605)) = (sqrt(39605) - 199)/2.

Examples

			a(4) = 1568397607 = 199*a(3) + a(2) = 199*7881196 + 39603 = ((199 + sqrt(39605) )/2)^4 + ((199 - sqrt(39605))/2)^4 = 1568397606.9999999993624065... + 0.0000000006375934...
		

Crossrefs

Lucas polynomials Lucas(n,m): A000032 (m=1), A002203 (m=2), A006497 (m=3), A014448 (m=4), A087130 (m=5), A085447 (m=6), A086902 (m=7), A086594 (m=8), A087798 (m=9), A086927 (m=10), A001946 (m=11), A086928 (m=12), A088316 (m=13), A090300 (m=14), A090301 (m=15), A090305 (m=16), A090306 (m=17), A090307 (m=18), A090308 (m=19), A090309 (m=20), A090310 (m=21), A090313 (m=22), A090314 (m=23), A090316 (m=24), A330767 (m=25), A087281 (m=29), A087287 (m=76), this sequence (m=199).

Programs

  • GAP
    List([0..20], n-> Lucas(1,-1,11*n)[2] ); # G. C. Greubel, Dec 30 2019
  • Magma
    [Lucas(11*n): n in [0..20]]; // Vincenzo Librandi, Apr 15 2011
    
  • Maple
    seq(simplify(2*(-I)^n*ChebyshevT(n, 199*I/2)), n = 0..20); # G. C. Greubel, Dec 31 2019
  • Mathematica
    LucasL[11*Range[0,20]] (* or *) LinearRecurrence[{199,1},{2,199},20] (* Harvey P. Dale, Dec 23 2015 *)
    LucasL[Range[20]-1,199] (* G. C. Greubel, Dec 31 2019 *)
  • PARI
    vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 199*I/2) ) \\ G. C. Greubel, Dec 31 2019
    
  • Sage
    [lucas_number2(11*n,1,-1) for n in (0..20)] # G. C. Greubel, Dec 30 2019
    

Formula

a(n) = 199*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 199.
a(n) = ((199 + sqrt(39605))/2)^n + ((199 - sqrt(39605))/2)^n.
a(n)^2 = a(2n) - 2 if n = 1, 3, 5, ...;
a(n)^2 = a(2n) + 2 if n = 2, 4, 6, ....
G.f.: (2 - 199*x)/(1 - 199*x - x^2). - Philippe Deléham, Nov 02 2008
a(n) = Lucas(n, 199) = 2*(-i)^n * ChebyshevT(n, 199*i/2). - G. C. Greubel, Dec 31 2019
E.g.f.: 2*exp(199*x/2)*cosh(sqrt(39605)*x/2). - Stefano Spezia, Jan 01 2020
Previous Showing 21-30 of 45 results. Next