A090310
a(n) = 21*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 21.
Original entry on oeis.org
2, 21, 443, 9324, 196247, 4130511, 86936978, 1829807049, 38512885007, 810600392196, 17061121121123, 359094143935779, 7558038143772482, 159077895163157901, 3348193836570088403, 70471148463135014364
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
a(4) = 21*a(3) + a(2) = 21*9324 + 443 = ((21+sqrt(445))/2)^4 + ((21-sqrt(445))/2)^4 = 196246.9999949043 + 0.0000050956 = 196247.
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14),
A090301 (m=15),
A090305 (m=16),
A090306 (m=17),
A090307 (m=18),
A090308 (m=19),
A090309 (m=20), this sequence (m=21),
A090313 (m=22),
A090314 (m=23),
A090316 (m=24),
A330767 (m=25).
-
m:=21;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 30 2019
-
m:=21; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 30 2019
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 21*I/2)), n = 0..20); # G. C. Greubel, Dec 30 2019
-
LinearRecurrence[{21,1},{2,21},40] (* or *) CoefficientList[ Series[ (2-21x)/(1-21x-x^2),{x,0,40}],x] (* Harvey P. Dale, Apr 24 2011 *)
LucasL[Range[20]-1,21] (* G. C. Greubel, Dec 30 2019 *)
-
vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 21*I/2) ) \\ G. C. Greubel, Dec 30 2019
-
[2*(-I)^n*chebyshev_T(n, 21*I/2) for n in (0..20)] # G. C. Greubel, Dec 30 2019
A090305
a(n) = 16*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 16.
Original entry on oeis.org
2, 16, 258, 4144, 66562, 1069136, 17172738, 275832944, 4430499842, 71163830416, 1143051786498, 18359992414384, 294902930416642, 4736806879080656, 76083812995707138, 1222077814810394864, 19629328849962024962
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
a(4) = 16*a(3) + a(2) = 16*4144 + 258 = (8+sqrt(65))^4 + (8-sqrt(65))^4 = 66561.99998497... + 0.00001502... = 66562.
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14),
A090301 (m=15), this sequence (m=16),
A090306 (m=17),
A090307 (m=18),
A090308 (m=19),
A090309 (m=20),
A090310 (m=21),
A090313 (m=22),
A090314 (m=23),
A090316 (m=24),
A330767 (m=25),
A087281 (m=29),
A087287 (m=76),
A089772 (m=199).
-
m:=16;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 31 2019
-
m:=16; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 31 2019
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 8*I)), n = 0..20); # G. C. Greubel, Dec 31 2019
-
LinearRecurrence[{16,1},{2,16},40] (* or *) With[{c=Sqrt[65]}, Simplify/@ Table[(c-8)((8+c)^n-(8-c)^n (129+16c)),{n,20}]] (* Harvey P. Dale, Oct 31 2011 *)
LucasL[Range[20]-1, 16] (* G. C. Greubel, Dec 31 2019 *)
-
vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 8*I) ) \\ G. C. Greubel, Dec 31 2019
-
[2*(-I)^n*chebyshev_T(n, 8*I) for n in (0..20)] # G. C. Greubel, Dec 31 2019
A090307
a(n) = 18*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 18.
Original entry on oeis.org
2, 18, 326, 5886, 106274, 1918818, 34644998, 625528782, 11294163074, 203920464114, 3681862517126, 66477445772382, 1200275886420002, 21671443401332418, 391286257110403526, 7064824071388595886
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
a(4) = 18*a(3) + a(2) = 18*5886 + 326 = (9+sqrt(82))^4 + (9-sqrt(82))^4 = 106273.9999905903 + 0.000009406 = 106274.
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14),
A090301 (m=15),
A090305 (m=16),
A090306 (m=17), this sequence (m=18),
A090308 (m=19),
A090309 (m=20),
A090310 (m=21),
A090313 (m=22),
A090314 (m=23),
A090316 (m=24),
A330767 (m=25).
-
m:=18;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 30 2019
-
m:=18; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 30 2019
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 9*I)), n = 0..20); # G. C. Greubel, Dec 30 2019
-
LinearRecurrence[{18,1},{2,18},25] (* or *) CoefficientList[ Series[ (2-18x)/(1-18x-x^2),{x,0,25}],x] (* Harvey P. Dale, Apr 22 2011 *)
LucasL[Range[20]-1, 18] (* G. C. Greubel, Dec 30 2019 *)
-
vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 9*I) ) \\ G. C. Greubel, Dec 30 2019
-
[2*(-I)^n*chebyshev_T(n, 9*I) for n in (0..20)] # G. C. Greubel, Dec 30 2019
A090308
a(n) = 19*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 19.
Original entry on oeis.org
2, 19, 363, 6916, 131767, 2510489, 47831058, 911300591, 17362542287, 330799604044, 6302555019123, 120079344967381, 2287810109399362, 43588471423555259, 830468767156949283, 15822495047405591636
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
a(4) = 19*a(3) + a(2) = 19*6916 + 363 = ((19+sqrt(365))/2)^4 + ((19-sqrt(365))/2)^4 = 131766.9999924108 + 0.0000075891 = 131767.
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14),
A090301 (m=15),
A090305 (m=16),
A090306 (m=17),
A090307 (m=18), this sequence (m=19),
A090309 (m=20),
A090310 (m=21),
A090313 (m=22),
A090314 (m=23),
A090316 (m=24),
A330767 (m=25).
-
m:=19;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 30 2019
-
m:=19; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 30 2019
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 19*I/2)), n = 0..20); # G. C. Greubel, Dec 30 2019
-
LucasL[Range[20]-1,20] (* G. C. Greubel, Dec 30 2019 *)
-
vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 19*I/2) ) \\ G. C. Greubel, Dec 30 2019
-
[2*(-I)^n*chebyshev_T(n, 19*I/2) for n in (0..20)] # G. C. Greubel, Dec 30 2019
A090313
a(n) = 22*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 22.
Original entry on oeis.org
2, 22, 486, 10714, 236194, 5206982, 114789798, 2530582538, 55787605634, 1229857906486, 27112661548326, 597708411969658, 13176697724880802, 290485058359347302, 6403847981630521446, 141175140654230819114
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
a(4) = 236194 = 22*a(3) + a(2) = 22*10714 + 486 = (11 + sqrt(122))^4 + (11 - sqrt(122))^4 = 236193.999995766 + 0.000004233 = 236194.
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14),
A090301 (m=15),
A090305 (m=16),
A090306 (m=17),
A090307 (m=18),
A090308 (m=19),
A090309 (m=20),
A090310 (m=21), this sequence (m=22),
A090314 (m=23),
A090316 (m=24),
A330767 (m=25).
-
m:=22;; a:=[2,m];; for n in [3..20] do a[n]:=m*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 30 2019
-
m:=22; I:=[2,m]; [n le 2 select I[n] else m*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 30 2019
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 11*I)), n = 0..20); # G. C. Greubel, Dec 30 2019
-
LucasL[Range[20]-1,22] (* G. C. Greubel, Dec 29 2019 *)
-
vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 11*I) ) \\ G. C. Greubel, Dec 30 2019
-
[2*(-I)^n*chebyshev_T(n, 11*I) for n in (0..20)] # G. C. Greubel, Dec 30 2019
A090314
a(n) = 23*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 23.
Original entry on oeis.org
2, 23, 531, 12236, 281959, 6497293, 149719698, 3450050347, 79500877679, 1831970236964, 42214816327851, 972772745777537, 22415987969211202, 516540496037635183, 11902847396834820411, 274282030623238504636, 6320389551731320427039, 145643241720443608326533, 3356114949121934311937298
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
a(4) = 281959 = 23*a(3) + a(2) = 23*12236 + 531 = ((23 + sqrt(533))/2)^4 + ((23 - sqrt(533))/2)^4 = 281958.999996453 + 0.000003546 = 281959.
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14),
A090301 (m=15),
A090305 (m=16),
A090306 (m=17),
A090307 (m=18),
A090308 (m=19),
A090309 (m=20),
A090310 (m=21),
A090313 (m=22), this sequence (m=23),
A090316 (m=24),
A330767 (m=25).
-
a:=[2,23];; for n in [3..20] do a[n]:=23*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 29 2019
-
I:=[2,23]; [n le 2 select I[n] else 23*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 29 2019
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 23*I/2)), n = 0..20); # G. C. Greubel, Dec 29 2019
-
LinearRecurrence[{23,1},{2,23},20] (* Harvey P. Dale, Jul 11 2014 *)
LucasL[Range[20]-1,23] (* G. C. Greubel, Dec 29 2019 *)
-
vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 23*I/2) ) \\ G. C. Greubel, Dec 29 2019
-
[2*(-I)^n*chebyshev_T(n, 23*I/2) for n in (0..20)] # G. C. Greubel, Dec 29 2019
A090316
a(n) = 24*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 24.
Original entry on oeis.org
2, 24, 578, 13896, 334082, 8031864, 193098818, 4642403496, 111610782722, 2683301188824, 64510839314498, 1550943444736776, 37287153512997122, 896442627756667704, 21551910219673022018, 518142287899909196136, 12456966819817493729282, 299485345963519758698904
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 25 2004
a(4) =334082 = 24a(3) + a(2) = 24*13896+ 578 = (12+sqrt(145))^4 + (12-sqrt(145))^4 = 334081.99999700672 + 0.00000299327 = 334082.
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14),
A090301 (m=15),
A090305 (m=16),
A090306 (m=17),
A090307 (m=18),
A090308 (m=19),
A090309 (m=20),
A090310 (m=21),
A090313 (m=22),
A090314 (m=23), this sequence (m=24),
A330767 (m=25).
-
a:=[2,24];; for n in [3..20] do a[n]:=24*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Dec 29 2019
-
I:=[2,24]; [n le 2 select I[n] else 24*Self(n-1) +Self(n-2): n in [1..20]]; // G. C. Greubel, Dec 29 2019
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 12*I)), n = 0..20); # G. C. Greubel, Dec 29 2019
-
LinearRecurrence[{24,1},{2,24},20] (* Harvey P. Dale, Aug 30 2015 *)
LucasL[Range[20]-1,24] (* G. C. Greubel, Dec 29 2019 *)
-
vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 12*I) ) \\ G. C. Greubel, Dec 29 2019
-
[2*(-I)^n*chebyshev_T(n, 12*I) for n in (0..20)] # G. C. Greubel, Dec 29 2019
A097783
Chebyshev polynomials S(n,11) + S(n-1,11) with Diophantine property.
Original entry on oeis.org
1, 12, 131, 1429, 15588, 170039, 1854841, 20233212, 220710491, 2407582189, 26262693588, 286482047279, 3125039826481, 34088956044012, 371853476657651, 4056299287190149, 44247438682433988, 482665526219583719, 5265073349732986921, 57433141320843272412
Offset: 0
All positive solutions to the Pell equation x^2 - 13*y^2 = -4 are (3=3*1,1), (36=3*12,10), (393=3*131,109), (4287=3*1429,1189 ), ...
- Colin Barker, Table of n, a(n) for n = 0..963
- Andersen, K., Carbone, L. and Penta, D., Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
- Sergio Falcon, Relationships between Some k-Fibonacci Sequences, Applied Mathematics, 2014, 5, 2226-2234.
- Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13.
- Tanya Khovanova, Recursive Sequences
- Giovanni Lucca, Integer Sequences and Circle Chains Inside a Hyperbola, Forum Geometricorum (2019) Vol. 19, 11-16.
- Eric Weisstein's World of Mathematics, Fibonacci Polynomial
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
- H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (11,-1).
-
I:=[1,12]; [n le 2 select I[n] else 11*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 22 2015
-
CoefficientList[Series[(1 + x) / (1 - 11 x + x^2), {x, 0, 33}], x] (* Vincenzo Librandi, Mar 22 2015 *)
-
Vec((1+x)/(1-11*x+x^2) + O(x^30)) \\ Michel Marcus, Mar 22 2015
-
[(lucas_number2(n,11,1)-lucas_number2(n-1,11,1))/9 for n in range(1, 19)] # Zerinvary Lajos, Nov 10 2009
A330767
a(n) = 25*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 25.
Original entry on oeis.org
2, 25, 627, 15700, 393127, 9843875, 246490002, 6172093925, 154548838127, 3869893047100, 96901875015627, 2426416768437775, 60757321085960002, 1521359443917437825, 38094743419021905627, 953889944919465078500, 23885343366405648868127, 598087474105060686781675, 14976072195992922818410002
Offset: 0
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14),
A090301 (m=15),
A090305 (m=16),
A090306 (m=17),
A090307 (m=18),
A090308 (m=19),
A090309 (m=20),
A090310 (m=21),
A090313 (m=22),
A090314 (m=23),
A090316 (m=24), this sequence (m=25).
-
a:=[2,25];; for n in [3..25] do a[n]:=25*a[n-1]+a[n-2]; od; a;
-
I:=[2,25]; [n le 2 select I[n] else 25*Self(n-1) +Self(n-2): n in [1..25]];
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 25*I/2)), n = 0..25);
-
LucasL[Range[25] -1, 25]
-
vector(26, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 25*I/2) )
-
[2*(-I)^n*chebyshev_T(n, 25*I/2) for n in (0..25)]
A089772
a(n) = Lucas(11*n).
Original entry on oeis.org
2, 199, 39603, 7881196, 1568397607, 312119004989, 62113250390418, 12360848946698171, 2459871053643326447, 489526700523968661124, 97418273275323406890123, 19386725908489881939795601, 3858055874062761829426214722
Offset: 0
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Jan 09 2004
a(4) = 1568397607 = 199*a(3) + a(2) = 199*7881196 + 39603 = ((199 + sqrt(39605) )/2)^4 + ((199 - sqrt(39605))/2)^4 = 1568397606.9999999993624065... + 0.0000000006375934...
Lucas polynomials Lucas(n,m):
A000032 (m=1),
A002203 (m=2),
A006497 (m=3),
A014448 (m=4),
A087130 (m=5),
A085447 (m=6),
A086902 (m=7),
A086594 (m=8),
A087798 (m=9),
A086927 (m=10),
A001946 (m=11),
A086928 (m=12),
A088316 (m=13),
A090300 (m=14),
A090301 (m=15),
A090305 (m=16),
A090306 (m=17),
A090307 (m=18),
A090308 (m=19),
A090309 (m=20),
A090310 (m=21),
A090313 (m=22),
A090314 (m=23),
A090316 (m=24),
A330767 (m=25),
A087281 (m=29),
A087287 (m=76), this sequence (m=199).
-
List([0..20], n-> Lucas(1,-1,11*n)[2] ); # G. C. Greubel, Dec 30 2019
-
[Lucas(11*n): n in [0..20]]; // Vincenzo Librandi, Apr 15 2011
-
seq(simplify(2*(-I)^n*ChebyshevT(n, 199*I/2)), n = 0..20); # G. C. Greubel, Dec 31 2019
-
LucasL[11*Range[0,20]] (* or *) LinearRecurrence[{199,1},{2,199},20] (* Harvey P. Dale, Dec 23 2015 *)
LucasL[Range[20]-1,199] (* G. C. Greubel, Dec 31 2019 *)
-
vector(21, n, 2*(-I)^(n-1)*polchebyshev(n-1, 1, 199*I/2) ) \\ G. C. Greubel, Dec 31 2019
-
[lucas_number2(11*n,1,-1) for n in (0..20)] # G. C. Greubel, Dec 30 2019
Comments