A278051 Let v = list of denominators of Farey series of order n (see A006843); let b(n) = Sum 1/(k+k'), where (k,k') are pairs of successive terms of v; a(n) = denominator of b(n).
2, 3, 10, 35, 252, 2772, 6435, 858, 680680, 12932920, 5290740, 121687020, 1029659400, 3088978200, 582272390700, 18050444111700, 128701918800, 25740383760, 70301729698200, 10043104242600, 109530094869795600, 523310453266801200, 51193413906534900, 481218090721428060
Offset: 1
Examples
The fractions b(n) are 1/2, 2/3, 9/10, 38/35, 347/252, 4189/2772, 11767/6435, 1733/858, 1548081/680680, 31464371/12932920, 14680543/5290740, 353517989/121687020, 3350216417/1029659400, 10571768267/3088978200, ...
Links
- J. Lehner and M. Newman, Sums involving Farey fractions, Acta Arithmetica 15.2 (1969): 181-187. See Eq. (20).
Comments