cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A300122 Number of normal generalized Young tableaux of size n with all rows and columns weakly increasing and all regions connected skew partitions.

Original entry on oeis.org

1, 4, 13, 51, 183, 771, 3087, 13601, 59933, 278797, 1311719, 6453606, 32179898, 166075956, 871713213, 4704669005, 25831172649, 145260890323
Offset: 1

Views

Author

Gus Wiseman, Feb 25 2018

Keywords

Comments

The diagram of a connected skew partition is required to be connected as a polyomino but can have empty rows or columns. A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers.

Examples

			The a(3) = 13 tableaux:
1 1 1   1 1 2   1 2 2   1 2 3
.
1 1   1 1   1 2   1 2   1 3
1     2     1     3     2
.
1   1   1   1
1   1   2   2
1   2   2   3
		

Crossrefs

Programs

  • Mathematica
    undcon[y_]:=Select[Tuples[Range[0,#]&/@y],Function[v,GreaterEqual@@v&&With[{r=Select[Range[Length[y]],y[[#]]=!=v[[#]]&]},Or[Length[r]<=1,And@@Table[v[[i]]
    				

A300123 Number of ways to tile the diagram of the integer partition with Heinz number n using connected skew partitions.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 8, 4, 10, 8, 16, 8, 32, 16, 20, 8, 64, 20, 128, 16, 40, 32, 256, 16, 52, 64, 52, 32, 512, 40, 1024, 16, 80, 128, 104, 40, 2048, 256, 160, 32, 4096, 80, 8192, 64, 104, 512, 16384, 32, 272, 104
Offset: 1

Views

Author

Gus Wiseman, Feb 25 2018

Keywords

Comments

The diagram of a connected skew partition is required to be connected as a polyomino but can have empty rows or columns. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Crossrefs

A300124 Number of ways to tile the diagram of an integer partition of n using connected skew partitions.

Original entry on oeis.org

1, 4, 12, 42, 120, 416, 1184, 3888
Offset: 1

Views

Author

Gus Wiseman, Feb 25 2018

Keywords

Comments

The diagram of a connected skew partition is required to be connected as a polyomino but can have empty rows or columns.

Crossrefs

A275762 G.f.: 2 - x/(1+2*x - x^3/(1+2*x^2 - x^5/(1+2*x^3 - x^7/(1+2*x^4 - x^9/(1+2*x^5 - x^11/(1 - ...)))))), a continued fraction.

Original entry on oeis.org

2, -1, 2, -4, 7, -12, 22, -41, 74, -133, 243, -444, 806, -1465, 2669, -4859, 8840, -16087, 29282, -53296, 96994, -176527, 321290, -584755, 1064251, -1936952, 3525296, -6416092, 11677369, -21252993, 38680798, -70399646, 128128414, -233195704, 424419826, -772450633, 1405872057, -2558708924, 4656889892, -8475611623, 15425744240, -28075093283, 51097104306, -92997520459, 169256926243, -308050225082, 560656176744, -1020402917484, 1857149100126, -3380040101304, 6151725289638
Offset: 0

Views

Author

Paul D. Hanna, Aug 10 2016

Keywords

Comments

a(n) ~ c/r^n, where r = -0.54944587773859960333406076695895194626366374257497442830... and c = 0.6098779103867259353642411483841966048261178594794555738...
The g.f. of related triangle A275760 satisfies: G(x,y) = x*y + 1/G(x,x*y) with G(0,y) = 1.

Examples

			G.f.: A(x) = 2 - x + 2*x^2 - 4*x^3 + 7*x^4 - 12*x^5 + 22*x^6 - 41*x^7 + 74*x^8 - 133*x^9 + 243*x^10 - 444*x^11 + 806*x^12 - 1465*x^13 + 2669*x^14 - 4859*x^15 +...
		

Crossrefs

Cf. A275760, A275761, A006958, A227309, A291940 (column 1).

Programs

  • Mathematica
    m = 51;
    2 + ContinuedFractionK[-x^(2i-1), 1+2x^i, {i, 1, Sqrt[m]//Floor}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Nov 02 2019 *)
  • PARI
    {a(n) = my(A=1 +x*O(x^n)); for(k=0, n, A = 1/(A + y*x^(n+1-k))); polcoeff(1 + subst(A,y,1), n)}
    for(n=0, 50, print1(a(n), ", "))

Formula

Equals the diagonal sums of the irregular triangle A275760.
G.f.: 1/F(x) + 1, where F(x) is the g.f. of A275761, the row sums of triangle A275760.
G.f.: G(x,1/x), where G(x,y) = x*y + 1/G(x,x*y) with G(0,y) = 1, where G(x,y) is the g.f. of A275760.
G.f.: 2 - x/(1+x + x/(1+x^2 - x^4/(1+x^3 + x^2/(1+x^4 - x^7/(1+x^5 + x^3/(1+x^6 - x^10/(1+x^7 + x^4/(1+x^8 - x^13/(1+x^9 + x^5/(1+x^10 - x^16/(1 + ...))))))))))), a continued fraction.
G.f.: 1/(1 - 1/(1 + (1+x) - x^2/(1 + x*(1+x) - x^4/(1 + x^2*(1+x) - x^6/(1 + x^3*(1+x) - x^8/(1 + x^4*(1+x) - x^10/(1 + x^5*(1+x) - x^12/(1 - ...)))))))), a continued fraction.
G.f.: 1/(1 - 1/(1+x + 1/(1+x^2 - x^3/(1+x^3 + x/(1+x^4 - x^6/(1+x^5 + x^2/(1+x^6 - x^9/(1+x^7 + x^3/(1+x^8 - x^12/(1+x^9 + x^4/(1+x^10 - x^15/(1 + ...)))))))))))), a continued fraction.
G.f.: 1 + 1/(1 + x/(1 + x/(1 + x^2/(1 + x^2/(1 + x^3/(1 + x^3/(1 + ...))))))) since the odd part of this continued fraction equals the defining continued fraction given above. Cf. A006958 and A227309. - Peter Bala, Oct 29 2017

A291929 Triangle read by rows: T(n,k) = T(n-k,k-1) + 2*T(n-k,k) + T(n-k,k+1) with T(0,0) = 1 for 0 <= k <= A003056(n).

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 4, 1, 0, 9, 2, 0, 20, 6, 0, 46, 13, 1, 0, 105, 32, 2, 0, 242, 73, 6, 0, 557, 171, 15, 0, 1285, 394, 36, 1, 0, 2964, 914, 85, 2, 0, 6842, 2109, 201, 6, 0, 15793, 4877, 467, 15, 0, 36463, 11261, 1086, 38, 0, 84187, 26014, 2517, 89, 1, 0, 194388
Offset: 0

Views

Author

Seiichi Manyama, Sep 06 2017

Keywords

Examples

			First few rows are:
  1;
  0,    1;
  0,    2;
  0,    4,   1;
  0,    9,   2;
  0,   20,   6;
  0,   46,  13,  1;
  0,  105,  32,  2;
  0,  242,  73,  6;
  0,  557, 171, 15;
  0, 1285, 394, 36, 1.
		

Crossrefs

Row sums give A291930.
Columns 0-1 give A000007, A006958 (for n>0).

A300118 Number of skew partitions whose quotient diagram is connected and whose numerator is the integer partition with Heinz number n.

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 5, 4, 6, 5, 6, 5, 7, 6, 7, 5, 8, 7, 9, 6, 8, 7, 10, 6, 10, 8, 10, 7, 11, 8, 12, 6, 9, 9, 11, 8, 13, 10, 10, 7, 14, 9, 15, 8, 11, 11, 16, 7, 15, 11, 11, 9, 17, 11, 12, 8, 12, 12, 18, 9, 19, 13, 12, 7, 13, 10, 20, 10, 13, 12, 21, 9, 22, 14, 15, 11
Offset: 1

Views

Author

Gus Wiseman, Feb 25 2018

Keywords

Comments

The diagram of a connected skew partition is required to be connected as a polyomino but can have empty rows or columns.

Examples

			The a(15) = 7 denominators are (), (1), (11), (22), (3), (31), (32) with diagrams:
o o o   . o o   . o o   . . o   . . .   . . .   o o o
o o     o o     . o     . .     o o     . o     o o
Missing are the two disconnected skew partitions:
. . o   . . o
o o     . o
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    undcon[y_]:=Select[Tuples[Range[0,#]&/@y],Function[v,GreaterEqual@@v&&With[{r=Select[Range[Length[y]],y[[#]]=!=v[[#]]&]},Or[Length[r]<=1,And@@Table[v[[i]]
    				

A075125 Number of parallelogram polyominoes of site-perimeter n (also called staircase polyominoes, although that term is overused).

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 2, 5, 10, 21, 46, 102, 230, 526, 1216, 2838, 6678, 15825, 37734, 90469, 217962, 527418, 1281250, 3123603, 7639784, 18740795, 46096732, 113666820, 280928470, 695796891, 1726744166, 4293121609, 10692145390, 26671959375, 66634602702
Offset: 1

Views

Author

Andrew Rechnitzer (a.rechnitzer(AT)ms.unimelb.edu.au), Sep 09 2002

Keywords

Comments

a(n) is the number of Dyck n-paths with no UDU's and no DUD's (A004148) whose first ascent is of length 3. For example, a(5)=2 counts UUUDDUUDDD, UUUDDDUUDD. - David Callan, May 08 2007
From Emeric Deutsch, Nov 07 2009: (Start)
a(n) = Sum_{k>=0} k*A166299(n-2,k).
Number of UUDD's starting at level 0 in all Dyck paths of semilength n-2 that have no ascents and no descents of length 1. Example: a(6)=2 because in UUDDUUDD and UUUUDDDD we have 2 + 0 = 2 UUDD's starting at level 0. (The Dyck paths having no ascents and no descents of length 1 are enumerated by the secondary structure numbers A004148).
(End)

References

  • M. P. Delest, D. Gouyou-Beauchamps and B. Vauquelin, Enumeration of parallelogram polyominoes with given bond and site parameter, Graphs and Combinatorics, 3(1987),325-339. [From Emeric Deutsch, Nov 07 2009]

Crossrefs

Programs

  • Maple
    G := 4*z^4/(1+z-z^2+sqrt((1+z+z^2)*(1-3*z+z^2)))^2: Gser := series(G, z = 0, 32): seq(coeff(Gser, z, n), n = 1 .. 30); # Emeric Deutsch, Nov 07 2009
  • Mathematica
    Rest[CoefficientList[Series[4 x^4/(1 + x - x^2 + Sqrt[(1 + x + x^2) (1 - 3 x + x^2)])^2, {x, 0, 40}], x]] (* Vaclav Kotesovec, Mar 21 2014 *)
  • Maxima
    a(n):=2*sum((binomial(k-2,2*k-n+2)*binomial(k+1,n-k-3))/(k+1),k,floor((n-2)/2),n-3); /* Vladimir Kruchinin, Oct 12 2020 */

Formula

G.f.: p^2/2*(1-p^2-2*p^3+p^4-(1+p-p^2)*sqrt((1+p+p^2)*(1-3*p+p^2)));
a(n) ~ sqrt(2) * ((3+sqrt(5))/2)^n / (sqrt(377 + 843/sqrt(5)) * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 21 2014. Equivalently, a(n) ~ 5^(1/4) * phi^(2*n - 7) / (sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 07 2021
Conjecture: -(2*n-11)*(n-2)*(2*n-9)*a(n) +4*(2*n-11)*(n-3)*(n-5)*a(n-1) +(4*n^3-60*n^2+317*n-582)*a(n-2) +2*(2*n-7)*(2*n^2-26*n+81)*a(n-3) -(n-10)*(2*n-7)*(2*n-9)*a(n-4)=0. - R. J. Mathar, May 30 2016
a(n) = 2 * Sum_{k=floor((n-2)/2)..n-3} C(k-2,2*k-n+2)*C(k+1,n-k-3)/(k+1). - Vladimir Kruchinin, Oct 12 2020

Extensions

Offset changed to 1 by Emeric Deutsch, Nov 07 2009
More terms from Vincenzo Librandi, Mar 22 2014
Name modified by Alois P. Heinz, Sep 21 2016

A226728 G.f.: 1/G(0), where G(k) = 1 + q^(k+1) / (1 - q^(k+1)/G(k+2) ).

Original entry on oeis.org

1, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -2, 0, 0, 0, 3, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, -4, 0, 0, 0, 4, 0, 0, 0, -3, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, -6, 0, 0, 0, 7, 0, 0, 0, -5, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, -9, 0
Offset: 0

Views

Author

Joerg Arndt, Jun 29 2013

Keywords

Crossrefs

Cf. A049346 (g.f.: 1 - 1/G(0), G(k)= 1 + q^(k+1) / (1 - q^(k+1)/G(k+1) ) ).
Cf. A226729 (g.f.: 1/G(0), G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+2) ) ).
Cf. A006958 (g.f.: 1/G(0), G(k) = 1 - q^(k+1) / (1 - q^(k+1)/G(k+1) ) ).
Cf. A227309 (g.f.: 1/G(0), G(k) = 1 - q^(k+1) / (1 - q^(k+2)/G(k+1) ) ).

Programs

  • PARI
    N = 166;  q = 'q + O('q^N);
    G(k) = if(k>N, 1, 1 + q^(k+1) / (1 - q^(k+1) / G(k+2) ) );
    gf = 1 / G(0);
    Vec(gf)

Formula

G.f.: 1/(1+q/(1-q/(1+q^3/(1-q^3/(1+q^5/(1-q^5/(1+q^7/(1-q^7/(1+ ... ))))))))).
G.f.: 1/W(0), where W(k)= 1 + x^(2*k+1)/(1 - x^(2*k+1)/W(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Aug 16 2013

A259481 T(n,m) counts of border strips in skew tabloids of shape lambda/mu, with lambda and mu partitions of n and m (0<=m<=n).

Original entry on oeis.org

0, 1, 0, 2, 0, 0, 3, 0, 0, 0, 4, 1, 0, 0, 0, 5, 2, 0, 0, 0, 0, 6, 3, 2, 0, 0, 0, 0, 7, 4, 4, 0, 0, 0, 0, 0, 8, 5, 6, 3, 0, 0, 0, 0, 0, 9, 6, 8, 6, 1, 0, 0, 0, 0, 0, 10, 7, 10, 9, 6, 0, 0, 0, 0, 0, 0, 11, 8, 12, 12, 11, 2, 0, 0, 0, 0, 0, 0, 12, 9, 14, 15, 16, 9, 2, 0, 0, 0, 0, 0, 0, 13, 10, 16, 18, 21, 16, 7, 0, 0, 0, 0, 0, 0, 0, 14, 11, 18, 21, 26, 23, 18, 4, 0, 0, 0, 0, 0, 0, 0, 15, 12, 20, 24, 31, 30, 29, 12, 3, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Wouter Meeussen, Jul 01 2015

Keywords

Comments

Border strips are defined as connected skew tabloids free of 2-by-2 cells.
Row sums are the partition numbers (A000041), diagonals sum to 2^n (A000079).

Examples

			T(8,2) = 6, the pairs of partitions are ((5,3)/(2)), ((4,3,1)/(2)), ((4,2,2)/(1,1)), ((3,3,1,1)/(2)), ((3,2,2,1)/(1,1)) and ((2,2,2,1,1)/(1,1)); the diagrams are:
  x x 0 0 0 , x x 0 0 , x 0 0 0 , x x 0 , x 0 0 , x 0
  0 0 0       0 0 0     x 0       0 0 0   x 0     x 0
              0         0 0       0       0 0     0 0
                                  0       0       0
                                                  0
Triangle begins:
      k=0  1  2  3  4  5  6  7
  n=0;  0
  n=1;  1  0
  n=2;  2  0  0
  n=3;  3  0  0  0
  n=4;  4  1  0  0  0
  n=5;  5  2  0  0  0  0
  n=6;  6  3  2  0  0  0  0
  n=7;  7  4  4  0  0  0  0  0
		

References

  • I. G. MacDonald: "Symmetric functions and Hall polynomials"; Oxford University Press, 1979. Page 4.

Crossrefs

Programs

  • Mathematica
    (* see A259479 *) Table[Sum[Boole[majorsweak[\[Lambda],\[Mu]]&&( Tr[\[Lambda]]-Tr[\[Mu]]==Length[\[Lambda]]+First[\[Lambda]]-1 )&& redu[\[Lambda],\[Mu]]==factor[\[Lambda],\[Mu]]=={\[Lambda],\[Mu]}],{\[Lambda],Partitions[n]},{\[Mu],Partitions[k]}],{n,0,12},{k,0,n}]

A275761 G.f.: 1/(1 - x/(1+2*x - x^3/(1+2*x^2 - x^5/(1+2*x^3 - x^7/(1+2*x^4 - x^9/(1 - ...)))))), a continued fraction.

Original entry on oeis.org

1, 1, -1, 1, 0, -1, 0, 2, -1, -2, 1, 3, -3, -1, 3, 1, -7, 3, 7, -2, -12, 10, 5, -10, -8, 27, -8, -23, 2, 46, -38, -20, 30, 45, -100, 27, 71, 12, -183, 141, 65, -71, -213, 384, -100, -202, -145, 729, -545, -172, 93, 993, -1497, 430, 452, 962, -2982, 2188, 250, 451, -4527, 6014, -2119, -296, -5456, 12440, -9197, 1206, -5307, 20547, -24963, 11156, -5513, 28712, -53013, 40590, -15529, 36553, -93599, 107065, -60129, 52093, -145383, 231326, -186656, 113800, -214705, 429584, -474454, 323536
Offset: 0

Views

Author

Paul D. Hanna, Aug 08 2016

Keywords

Comments

Row sums of triangle A275760.
Limit a(n)/a(n+1) = -0.83683607462189175014302689979307768909437126147437...

Examples

			G.f.: A(x) = 1 + x - x^2 + x^3 - x^5 + 2*x^7 - x^8 - 2*x^9 + x^10 + 3*x^11 - 3*x^12 - x^13 + 3*x^14 + x^15 - 7*x^16 + 3*x^17 + 7*x^18 - 2*x^19 - 12*x^20 +...
such that
A(x) = 1/(1 - x/(1 + 2*x - x^3/(1 + 2*x^2 - x^5/(1 + 2*x^3 - x^7/(1 + 2*x^4 - x^9/(1 + 2*x^5 - x^11/(1 + 2*x^6 - x^13/(1 - ...)))))))).
RELATED SERIES.
1/A(x) = 1 - x + 2*x^2 - 4*x^3 + 7*x^4 - 12*x^5 + 22*x^6 - 41*x^7 + 74*x^8 - 133*x^9 + 243*x^10 - 444*x^11 + 806*x^12 - 1465*x^13 + 2669*x^14 - 4859*x^15 + 8840*x^16 - 16087*x^17 + 29282*x^18 - 53296*x^19 + 96994*x^20 - 176527*x^21 + 321290*x^22 - 584755*x^23 + 1064251*x^24 +...+ A275762(n)*x^n +...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1 +x*O(x^n)); for(k=0, n, A = 1/A + y*x^(n+1-k)); subst(polcoeff(A, n),y,1)}
    for(n=0,100,print1(a(n),", "))

Formula

G.f.: 1/(1 - x/(1+x + x/(1+x^2 - x^4/(1+x^3 + x^2/(1+x^4 - x^7/(1+x^5 + x^3/(1+x^6 - x^10/(1+x^7 + x^4/(1+x^8 - x^13/(1+x^9 + x^5/(1+x^10 - x^16/(1 + ...)))))))))))), a continued fraction.
G.f.: G(x,1) where G(x,y) = x*y + 1/G(x,x*y) with G(0,y) = 1 (cf. A275760).
G.f.: 1 + x/(1 + x/(1 + x^2/(1 + x^2/(1 + x^3/(1 + x^3/(1 + ...)))))). Cf. A006958 and A227309. - Peter Bala, Oct 29 2017
Previous Showing 11-20 of 32 results. Next