cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 204 results. Next

A243506 Permutation of natural numbers: a(n) = A048673(A122111(n)).

Original entry on oeis.org

1, 2, 5, 3, 14, 8, 41, 4, 13, 23, 122, 11, 365, 68, 38, 6, 1094, 18, 3281, 32, 113, 203, 9842, 17, 63, 608, 25, 95, 29525, 53, 88574, 7, 338, 1823, 188, 28, 265721, 5468, 1013, 50, 797162, 158, 2391485, 284, 74, 16403, 7174454, 20, 313, 88, 3038, 851, 21523361, 39, 563, 149, 9113, 49208, 64570082, 83, 193710245, 147623, 221, 9
Offset: 1

Views

Author

Antti Karttunen, Jun 25 2014

Keywords

Crossrefs

Inverse: A243505.
Related or similar permutations: A048673, A122111, A243065-A243066, A244981-A244982, A244983-A244984, A244153-A244154.

Programs

Formula

a(n) = A048673(A122111(n)).
a(n) = A243066(A241916(n)).
For all n >= 1, a(A000040(n)) = A007051(n) and a(A000079(n)) = A006254(n).

A201730 Triangle T(n,k), read by rows, given by (2,1/2,3/2,0,0,0,0,0,0,0,...) DELTA (0,1/2,-1/2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 0, 5, 1, 0, 14, 6, 0, 0, 41, 26, 1, 0, 0, 122, 100, 10, 0, 0, 0, 365, 363, 63, 1, 0, 0, 0, 1094, 1274, 322, 14, 0, 0, 0, 0, 3281, 4372, 1462, 116, 1, 0, 0, 0, 0, 9842, 14760, 6156, 744, 18, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Dec 04 2011

Keywords

Comments

Riordan array ((1-2x)/(1-4x+3x^2),x^2/(1-4x+3x^2)).
A007318*A201701 as lower triangular matrices.

Examples

			Triangle begins:
1
2, 0
5, 1, 0
14, 6, 0, 0
41, 26, 1, 0, 0
122, 100, 10, 0, 0, 0
365, 363, 63, 1, 0, 0, 0
		

Crossrefs

Cf. A007051 (1st column), A261064 (2nd column).

Programs

  • Maple
    A201730 := proc(n,k)
        (1-2*x)/(1-4*x+(3-y)*x^2) ;
        coeftayl(%,y=0,k) ;
        coeftayl(%,x=0,n) ;
    end proc:
    seq(seq(A201730(n,k),k=0..n),n=0..12) ; # R. J. Mathar, Dec 06 2011
  • Mathematica
    m = 13;
    (* DELTA is defined in A084938 *)
    DELTA[Join[{2, 1/2, 3/2}, Table[0, {m}]], Join[{0, 1/2, -1/2}, Table[0, {m}]], m] // Flatten (* Jean-François Alcover, Feb 19 2020 *)

Formula

G.f.: (1-2x)/(1-4x+(3-y)*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A139011(n), A000079(n), A007051(n), A006012(n), A001075(n), A081294(n), A001077(n), A084059(n), A108851(n), A084128(n), A081340(n), A084132(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively.
Sum_{k, k>+0} T(n+k,k) = A081704(n) .
T(n,k) = 3*T(n-1,k)+ Sum_{j>0} T(n-1-j,k-1).
T(n,k) = 4*T(n-1,k)+ T(n-2,k-1) - 3*T(n-2,k) with T(0,0)=1, T(1,0)= 2, T(1,1) = 0 and T(n,k) = 0 if k<0 or if n

A209100 T(n,k)=Number of nXk 0..2 arrays with new values 0..2 introduced in row major order and no element equal to more than one of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

1, 2, 2, 5, 11, 5, 14, 76, 82, 14, 41, 520, 1326, 612, 41, 122, 3552, 20928, 23248, 4568, 122, 365, 24256, 329064, 849548, 407832, 34096, 365, 1094, 165632, 5171088, 30836932, 34538488, 7154944, 254496, 1094, 3281, 1131008, 81254376, 1118366188
Offset: 1

Author

R. H. Hardin Mar 05 2012

Keywords

Comments

Table starts
....1.......2..........5............14...............41.................122
....2......11.........76...........520.............3552...............24256
....5......82.......1326.........20928...........329064.............5171088
...14.....612......23248........849548.........30836932..........1118366188
...41....4568.....407832......34538488.......2896732704........242632290432
..122...34096....7154944....1404480904.....272236743760......52675800891748
..365..254496..125526240...57113932788...25586970618660...11437585318270860
.1094.1899584.2202232576.2322577420320.2404896311723064.2483525516352937680

Examples

			Some solutions for n=4 k=3
..0..0..0....0..0..0....0..0..1....0..0..0....0..0..1....0..0..1....0..0..0
..1..1..1....1..1..2....1..2..1....1..1..1....2..0..2....2..0..2....1..1..2
..2..0..0....2..0..0....1..0..1....2..2..0....0..2..0....1..0..2....2..0..1
..1..2..2....1..1..1....2..1..2....1..2..1....2..0..2....1..2..1....0..1..0
		

Crossrefs

Column 1 and row 1 are A007051(n-1)

A222986 T(n,k)=Number of nXk 0..2 arrays with no more than floor(nXk/2) elements unequal to at least one horizontal or antidiagonal neighbor, with new values introduced in row major 0..2 order.

Original entry on oeis.org

1, 1, 2, 1, 4, 5, 4, 7, 14, 14, 5, 25, 43, 70, 41, 14, 86, 314, 584, 326, 122, 17, 332, 946, 4572, 2903, 1630, 365, 70, 1172, 10417, 42607, 68385, 45718, 8058, 1094, 89, 4566, 36987, 414907, 601407, 1037326, 227569, 40598, 3281, 326, 16562, 431995, 4405097
Offset: 1

Author

R. H. Hardin Mar 11 2013

Keywords

Comments

Table starts
.....1........1...........1..............4.................5
.....2........4...........7.............25................86
.....5.......14..........43............314...............946
....14.......70.........584...........4572.............42607
....41......326........2903..........68385............601407
...122.....1630.......45718........1037326..........29158784
...365.....8058......227569.......15904038.........433151066
..1094....40598.....3706702......245900395.......21273422658
..3281...204914....18721501.....3827698634......321537852228
..9842..1041934...309335666....59908716776....15962124223493
.29525..5315674..1578160193...941887270541...243618393075038
.88574.27228710.26302908158.14864346253334.12191944518185381

Examples

			Some solutions for n=3 k=4
..0..0..0..1....0..0..1..0....0..1..1..1....0..0..1..1....0..0..0..0
..0..0..0..0....2..1..1..1....1..1..1..2....0..2..2..2....0..0..0..1
..0..0..1..1....1..1..1..1....1..1..1..2....2..2..2..2....0..1..1..1
		

Crossrefs

Column 1 is A007051(n-1)
Row 1 is A222364

A223126 T(n,k)=Number of nXk 0..2 arrays with no more than floor(nXk/2) elements equal to at least one horizontal or antidiagonal neighbor, with new values introduced in row major 0..2 order.

Original entry on oeis.org

1, 1, 2, 2, 10, 5, 10, 64, 72, 14, 24, 489, 1154, 664, 41, 72, 3599, 28907, 33604, 5376, 122, 168, 27803, 444555, 1780641, 622568, 47968, 365, 664, 212771, 11814919, 95995609, 112106293, 18539512, 406400, 1094, 1632, 1656545, 186184618
Offset: 1

Author

R. H. Hardin Mar 15 2013

Keywords

Comments

Table starts
.....1...........1................2....................10
.....2..........10...............64...................489
.....5..........72.............1154.................28907
....14.........664............33604...............1780641
....41........5376...........622568.............112106293
...122.......47968.........18539512............7157970340
...365......406400........354680696..........461597847603
..1094.....3585408......10596201904........29989116614529
..3281....30987264.....206498940320......1959625907209239
..9842...272565760....6177157242496....128645318481467647
.29525..2378450944..121870726469408...8477443608456769792
.88574.20921604096.3647201710914880.560422268684443059564

Examples

			Some solutions for n=3 k=4
..0..1..0..2....0..1..0..0....0..1..0..2....0..1..2..0....0..1..0..2
..2..1..1..2....0..1..2..2....0..1..2..2....2..0..1..1....2..0..2..0
..0..0..1..0....0..1..0..0....2..2..1..2....0..2..2..0....1..2..1..0
		

Crossrefs

Column 1 is A007051(n-1)
Row 1 is A222848

A241370 T(n,k)=Number of nXk 0..2 arrays with no element equal to fewer vertical neighbors than horizontal neighbors, with new values 0..2 introduced in row major order.

Original entry on oeis.org

1, 1, 2, 2, 7, 5, 4, 28, 47, 14, 8, 121, 460, 326, 41, 16, 523, 4617, 7376, 2284, 122, 32, 2261, 46245, 169982, 118488, 16026, 365, 64, 9775, 463567, 3910194, 6280325, 1904096, 112458, 1094, 128, 42261, 4646421, 90008909, 332185927, 232173463
Offset: 1

Author

R. H. Hardin, Apr 20 2014

Keywords

Comments

Table starts
....1.......1..........2..............4.................8...................16
....2.......7.........28............121...............523.................2261
....5......47........460...........4617.............46245...............463567
...14.....326.......7376.........169982...........3910194.............90008909
...41....2284.....118488........6280325.........332185927..........17583615124
..122...16026....1904096......232173463.......28238828935........3437694358689
..365..112458...30598800.....8582759752.....2400505507498......672068364873884
.1094..789166..491723328...317280724429...204061855414167...131390467341043995
.3281.5537942.7902006144.11729003927933.17346886991310331.25687100469219790719

Examples

			Some solutions for n=4 k=4
..0..1..0..1....0..1..0..2....0..1..0..2....0..1..0..2....0..1..0..2
..1..1..2..0....1..0..2..1....0..2..0..0....2..0..0..1....0..1..2..1
..1..2..2..0....2..0..0..1....1..2..0..0....1..0..2..0....2..0..1..0
..1..2..2..1....0..1..0..2....0..1..0..1....2..0..1..2....1..0..1..0
		

Crossrefs

Column 1 is A007051(n-1)
Row 1 is A000079(n-2)

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1) -3*a(n-2)
k=2: a(n) = 7*a(n-1) +2*a(n-3) -8*a(n-4) for n>5
k=3: [order 8]
k=4: [order 31]
k=5: [order 94]
Empirical for row n:
n=1: a(n) = 2*a(n-1) for n>2
n=2: a(n) = 5*a(n-1) -2*a(n-2) -4*a(n-3) for n>5
n=3: a(n) = 9*a(n-1) +16*a(n-2) -50*a(n-3) -72*a(n-4) -32*a(n-5) -32*a(n-6) for n>8
n=4: [order 21] for n>23
n=5: [order 65] for n>67

A049455 Triangle read by rows: T(n,k) = numerator of fraction in k-th term of n-th row of variant of Farey series.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 6, 5, 9
Offset: 1

Comments

Stern's diatomic array read by rows (version 4, the 0,1 version).
This sequence divided by A049456 gives another version of the Stern-Brocot tree.
Row n has length 2^n + 1.
Define mediant of a/b and c/d to be (a+c)/(b+d). We get A006842/A006843 if we omit terms from n-th row in which denominator exceeds n.
Largest term of n-th row = A000045(n), Fibonacci numbers. - Reinhard Zumkeller, Apr 02 2014

Examples

			0/1, 1/1; 0/1, 1/2, 1/1; 0/1, 1/3, 1/2, 2/3, 1/1; 0/1, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 1/1; 0/1, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, ... = A049455/A049456
The 0,1 version of Stern's diatomic array (cf. A002487) begins:
0,1,
0,1,1,
0,1,1,2,1,
0,1,1,2,1,3,2,3,1,
0,1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1,
0,1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1,5,4,7,3,8,5,7,2,7,5,3,3,7,4,5,1,
...
		

References

  • Martin Gardner, Colossal Book of Mathematics, Classic Puzzles, Paradoxes, and Problems, Chapter 25, Aleph-Null and Aleph-One, p. 328, W. W. Norton & Company, NY, 2001.
  • J. C. Lagarias, Number Theory and Dynamical Systems, pp. 35-72 of S. A. Burr, ed., The Unreasonable Effectiveness of Number Theory, Proc. Sympos. Appl. Math., 46 (1992). Amer. Math. Soc.
  • W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 154.

Crossrefs

Row sums are A007051.
Cf. A000051 (row lengths), A293165 (distinct terms).

Programs

  • Haskell
    import Data.List (transpose)
    import Data.Ratio ((%), numerator, denominator)
    a049455 n k = a049455_tabf !! (n-1) !! (k-1)
    a049455_row n = a049455_tabf !! (n-1)
    a049455_tabf = map (map numerator) $ iterate
       (\row -> concat $ transpose [row, zipWith (+/+) row $ tail row]) [0, 1]
       where u +/+ v = (numerator u + numerator v) %
                       (denominator u + denominator v)
    -- Reinhard Zumkeller, Apr 02 2014
    
  • Mathematica
    f[l_List] := Block[{k = Length@l, j = l}, While[k > 1, j = Insert[j, j[[k]] + j[[k - 1]], k]; k--]; j]; NestList[f, {0, 1}, 6] // Flatten (* Robert G. Wilson v, Nov 10 2019 *)
  • PARI
    mediant(x, y) = (numerator(x)+numerator(y))/(denominator(x)+denominator(y));
    newrow(rowa) = {my(rowb = []); for (i=1, #rowa-1, rowb = concat(rowb, rowa[i]); rowb = concat(rowb, mediant(rowa[i], rowa[i+1]));); concat(rowb, rowa[#rowa]);}
    rows(nn) = {my(rowa); for (n=1, nn, if (n==1, rowa = [0, 1], rowa = newrow(rowa)); print(apply(x->numerator(x), rowa)););} \\ Michel Marcus, Apr 03 2019

Formula

Row 1 is 0/1, 1/1. Obtain row n from row n-1 by inserting mediants between each pair of terms.

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 12 2000

A083066 5th row of number array A083064.

Original entry on oeis.org

1, 5, 29, 173, 1037, 6221, 37325, 223949, 1343693, 8062157, 48372941, 290237645, 1741425869, 10448555213, 62691331277, 376147987661, 2256887925965, 13541327555789, 81247965334733, 487487792008397, 2924926752050381
Offset: 0

Author

Paul Barry, Apr 21 2003

Keywords

Comments

Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=8, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^(n-1)*charpoly(A,2). - Milan Janjic, Feb 21 2010
An Engel expansion of 3/2 to the base b := 6/5 as defined in A181565, with the associated series expansion 3/2 = b + b^2/5 + b^3/(5*29) + b^4/(5*29*173) + .... Cf. A007051. - Peter Bala, Oct 29 2013

Crossrefs

Programs

Formula

a(n) = (4*6^n+1)/5.
G.f.: (1-2*x)/((1-6*x)*(1-x)).
E.g.f.: (4*exp(6*x)+exp(x))/5.
a(n) = 6*a(n-1)-1 with n>0, a(0)=1. - Vincenzo Librandi, Aug 08 2010
a(n) = 7*a(n-1)-6*a(n-2). - Vincenzo Librandi, Nov 04 2011
a(n) = 6^n - Sum_{i=0..n-1} 6^i for n>0. - Bruno Berselli, Jun 20 2013

A164864 Number of ways of placing n labeled balls into 10 indistinguishable boxes; word structures of length n using a 10-ary alphabet.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678569, 4213530, 27641927, 190829797, 1381367941, 10448276360, 82285618467, 672294831619, 5676711562593, 49344452550230, 439841775811967, 4005444732928641, 37136385907400125, 349459367068932740
Offset: 0

Author

Alois P. Heinz, Aug 28 2009

Keywords

Programs

  • Maple
    # First program:
    a:= n-> ceil(2119/11520*2^n +103/1680*3^n +53/3456*4^n +11/3600*5^n +6^n/1920 +7^n/15120 +8^n/80640 +10^n/3628800): seq(a(n), n=0..25);
    # second program:
    a:= n-> add(Stirling2(n, k), k=0..10): seq(a(n), n=0..25);
  • Mathematica
    Table[Sum[StirlingS2[n,k],{k,0,10}],{n,0,30}] (* Harvey P. Dale, Nov 22 2023 *)

Formula

a(n) = Sum_{k=0..10} Stirling2 (n,k).
a(n) = ceiling(2119/11520*2^n +103/1680*3^n +53/3456*4^n +11/3600*5^n +6^n/1920 +7^n/15120 +8^n/80640 +10^n/3628800).
G.f.: (148329*x^9 -613453*x^8 +855652*x^7 -596229*x^6 +240065*x^5 -59410*x^4 +9177*x^3 -862*x^2 +45*x-1) / ((10*x-1) *(8*x-1) *(7*x-1) *(6*x-1) *(5*x-1) *(4*x-1) *(3*x-1) *(2*x-1) *(x-1)).
a(n) <= A000110(n) with equality only for n <= 10.

A208392 T(n,k)=Number of nXk 0..2 arrays with new values 0..2 introduced in row major order and no element equal to more than two of its immediate leftward or upward or right-upward antidiagonal neighbors.

Original entry on oeis.org

1, 2, 2, 5, 14, 5, 14, 117, 122, 14, 41, 1017, 3042, 1094, 41, 122, 8838, 76806, 79092, 9842, 122, 365, 76806, 1937736, 5800644, 2056392, 88574, 365, 1094, 667476, 48890520, 424785708, 438083928, 53466192, 797162, 1094, 3281, 5800644
Offset: 1

Author

R. H. Hardin Feb 25 2012

Keywords

Comments

Table starts
....1.......2...........5..............14.................41
....2......14.........117............1017...............8838
....5.....122........3042...........76806............1937736
...14....1094.......79092.........5800644..........424785708
...41....9842.....2056392.......438083928........93120350760
..122...88574....53466192.....33085555344.....20413586117376
..365..797162..1390120992...2498731184736...4475009970818208
.1094.7174454.36143145792.188712490047552.980999326809336384

Examples

			Some solutions for n=4 k=3
..0..0..1....0..0..0....0..0..0....0..0..0....0..0..0....0..0..1....0..0..1
..2..0..2....0..1..2....1..1..1....0..1..2....1..2..1....2..0..2....2..0..2
..1..0..2....0..0..0....1..0..0....2..0..0....0..2..2....2..2..0....0..2..2
..1..2..1....1..2..0....1..2..2....1..0..1....0..0..2....0..2..1....2..0..2
		

Crossrefs

Column 1 is A007051(n-1)
Column 2 is A199560(n-1)
Row 1 is A007051(n-1)
Previous Showing 41-50 of 204 results. Next