1, 2, 0, 5, 1, 0, 14, 6, 0, 0, 41, 26, 1, 0, 0, 122, 100, 10, 0, 0, 0, 365, 363, 63, 1, 0, 0, 0, 1094, 1274, 322, 14, 0, 0, 0, 0, 3281, 4372, 1462, 116, 1, 0, 0, 0, 0, 9842, 14760, 6156, 744, 18, 0, 0, 0, 0, 0
Offset: 0
Triangle begins:
1
2, 0
5, 1, 0
14, 6, 0, 0
41, 26, 1, 0, 0
122, 100, 10, 0, 0, 0
365, 363, 63, 1, 0, 0, 0
A209100
T(n,k)=Number of nXk 0..2 arrays with new values 0..2 introduced in row major order and no element equal to more than one of its immediate leftward or upward or right-upward antidiagonal neighbors.
Original entry on oeis.org
1, 2, 2, 5, 11, 5, 14, 76, 82, 14, 41, 520, 1326, 612, 41, 122, 3552, 20928, 23248, 4568, 122, 365, 24256, 329064, 849548, 407832, 34096, 365, 1094, 165632, 5171088, 30836932, 34538488, 7154944, 254496, 1094, 3281, 1131008, 81254376, 1118366188
Offset: 1
Some solutions for n=4 k=3
..0..0..0....0..0..0....0..0..1....0..0..0....0..0..1....0..0..1....0..0..0
..1..1..1....1..1..2....1..2..1....1..1..1....2..0..2....2..0..2....1..1..2
..2..0..0....2..0..0....1..0..1....2..2..0....0..2..0....1..0..2....2..0..1
..1..2..2....1..1..1....2..1..2....1..2..1....2..0..2....1..2..1....0..1..0
Column 1 and row 1 are
A007051(n-1)
A222986
T(n,k)=Number of nXk 0..2 arrays with no more than floor(nXk/2) elements unequal to at least one horizontal or antidiagonal neighbor, with new values introduced in row major 0..2 order.
Original entry on oeis.org
1, 1, 2, 1, 4, 5, 4, 7, 14, 14, 5, 25, 43, 70, 41, 14, 86, 314, 584, 326, 122, 17, 332, 946, 4572, 2903, 1630, 365, 70, 1172, 10417, 42607, 68385, 45718, 8058, 1094, 89, 4566, 36987, 414907, 601407, 1037326, 227569, 40598, 3281, 326, 16562, 431995, 4405097
Offset: 1
Some solutions for n=3 k=4
..0..0..0..1....0..0..1..0....0..1..1..1....0..0..1..1....0..0..0..0
..0..0..0..0....2..1..1..1....1..1..1..2....0..2..2..2....0..0..0..1
..0..0..1..1....1..1..1..1....1..1..1..2....2..2..2..2....0..1..1..1
A223126
T(n,k)=Number of nXk 0..2 arrays with no more than floor(nXk/2) elements equal to at least one horizontal or antidiagonal neighbor, with new values introduced in row major 0..2 order.
Original entry on oeis.org
1, 1, 2, 2, 10, 5, 10, 64, 72, 14, 24, 489, 1154, 664, 41, 72, 3599, 28907, 33604, 5376, 122, 168, 27803, 444555, 1780641, 622568, 47968, 365, 664, 212771, 11814919, 95995609, 112106293, 18539512, 406400, 1094, 1632, 1656545, 186184618
Offset: 1
Some solutions for n=3 k=4
..0..1..0..2....0..1..0..0....0..1..0..2....0..1..2..0....0..1..0..2
..2..1..1..2....0..1..2..2....0..1..2..2....2..0..1..1....2..0..2..0
..0..0..1..0....0..1..0..0....2..2..1..2....0..2..2..0....1..2..1..0
A241370
T(n,k)=Number of nXk 0..2 arrays with no element equal to fewer vertical neighbors than horizontal neighbors, with new values 0..2 introduced in row major order.
Original entry on oeis.org
1, 1, 2, 2, 7, 5, 4, 28, 47, 14, 8, 121, 460, 326, 41, 16, 523, 4617, 7376, 2284, 122, 32, 2261, 46245, 169982, 118488, 16026, 365, 64, 9775, 463567, 3910194, 6280325, 1904096, 112458, 1094, 128, 42261, 4646421, 90008909, 332185927, 232173463
Offset: 1
Some solutions for n=4 k=4
..0..1..0..1....0..1..0..2....0..1..0..2....0..1..0..2....0..1..0..2
..1..1..2..0....1..0..2..1....0..2..0..0....2..0..0..1....0..1..2..1
..1..2..2..0....2..0..0..1....1..2..0..0....1..0..2..0....2..0..1..0
..1..2..2..1....0..1..0..2....0..1..0..1....2..0..1..2....1..0..1..0
A049455
Triangle read by rows: T(n,k) = numerator of fraction in k-th term of n-th row of variant of Farey series.
Original entry on oeis.org
0, 1, 0, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 6, 5, 9
Offset: 1
0/1, 1/1; 0/1, 1/2, 1/1; 0/1, 1/3, 1/2, 2/3, 1/1; 0/1, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 1/1; 0/1, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, ... = A049455/A049456
The 0,1 version of Stern's diatomic array (cf. A002487) begins:
0,1,
0,1,1,
0,1,1,2,1,
0,1,1,2,1,3,2,3,1,
0,1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1,
0,1,1,2,1,3,2,3,1,4,3,5,2,5,3,4,1,5,4,7,3,8,5,7,2,7,5,3,3,7,4,5,1,
...
- Martin Gardner, Colossal Book of Mathematics, Classic Puzzles, Paradoxes, and Problems, Chapter 25, Aleph-Null and Aleph-One, p. 328, W. W. Norton & Company, NY, 2001.
- J. C. Lagarias, Number Theory and Dynamical Systems, pp. 35-72 of S. A. Burr, ed., The Unreasonable Effectiveness of Number Theory, Proc. Sympos. Appl. Math., 46 (1992). Amer. Math. Soc.
- W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 1, p. 154.
- Robert G. Wilson v, Table of n, a(n) for n = 1..10000 (first 8204 terms from Reinhard Zumkeller)
- C. Giuli and R. Giuli, A primer on Stern's diatomic sequence, Fib. Quart., 17 (1979), 103-108, 246-248 and 318-320 (but beware errors).
- Jennifer Lansing, Largest Values for the Stern Sequence, J. Integer Seqs., 17 (2014), #14.7.5.
- M. Shrader-Frechette, Modified Farey sequences and continued fractions, Math. Mag., 54 (1981), 60-63.
- N. J. A. Sloane, Stern-Brocot or Farey Tree
- Index entries for sequences related to Stern's sequences
-
import Data.List (transpose)
import Data.Ratio ((%), numerator, denominator)
a049455 n k = a049455_tabf !! (n-1) !! (k-1)
a049455_row n = a049455_tabf !! (n-1)
a049455_tabf = map (map numerator) $ iterate
(\row -> concat $ transpose [row, zipWith (+/+) row $ tail row]) [0, 1]
where u +/+ v = (numerator u + numerator v) %
(denominator u + denominator v)
-- Reinhard Zumkeller, Apr 02 2014
-
f[l_List] := Block[{k = Length@l, j = l}, While[k > 1, j = Insert[j, j[[k]] + j[[k - 1]], k]; k--]; j]; NestList[f, {0, 1}, 6] // Flatten (* Robert G. Wilson v, Nov 10 2019 *)
-
mediant(x, y) = (numerator(x)+numerator(y))/(denominator(x)+denominator(y));
newrow(rowa) = {my(rowb = []); for (i=1, #rowa-1, rowb = concat(rowb, rowa[i]); rowb = concat(rowb, mediant(rowa[i], rowa[i+1]));); concat(rowb, rowa[#rowa]);}
rows(nn) = {my(rowa); for (n=1, nn, if (n==1, rowa = [0, 1], rowa = newrow(rowa)); print(apply(x->numerator(x), rowa)););} \\ Michel Marcus, Apr 03 2019
More terms from Larry Reeves (larryr(AT)acm.org), Apr 12 2000
Original entry on oeis.org
1, 5, 29, 173, 1037, 6221, 37325, 223949, 1343693, 8062157, 48372941, 290237645, 1741425869, 10448555213, 62691331277, 376147987661, 2256887925965, 13541327555789, 81247965334733, 487487792008397, 2924926752050381
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Mudit Aggarwal and Samrith Ram, Generating Functions for Straight Polyomino Tilings of Narrow Rectangles, J. Int. Seq., Vol. 26 (2023), Article 23.1.4.
- R. J. Mathar, Tilings of rectangular regions by rectangular tiles: Counts derived from transfer matrices, arXiv:1406.7788 [math.CO], 2014, eq (43).
- Index entries for linear recurrences with constant coefficients, signature (7,-6).
-
[(4*6^n+1)/5: n in [0..30]]; // Vincenzo Librandi, Nov 06 2011
-
f[n_]:=6^n; lst={}; Do[a=f[n]; Do[a-=f[m],{m,n-1,1,-1}]; AppendTo[lst,a/6],{n,1,30}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 10 2010 *)
A164864
Number of ways of placing n labeled balls into 10 indistinguishable boxes; word structures of length n using a 10-ary alphabet.
Original entry on oeis.org
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678569, 4213530, 27641927, 190829797, 1381367941, 10448276360, 82285618467, 672294831619, 5676711562593, 49344452550230, 439841775811967, 4005444732928641, 37136385907400125, 349459367068932740
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Joerg Arndt and N. J. A. Sloane, Counting Words that are in "Standard Order"
- Dmytro S. Inosov and Emil Vlasák, Cryptarithmically unique terms in integer sequences, arXiv:2410.21427 [math.NT], 2024. See pp. 3-4, 16-18.
- N. Moreira and R. Reis, On the Density of Languages Representing Finite Set Partitions, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.8.
- Pierpaolo Natalini, Paolo Emilio Ricci, New Bell-Sheffer Polynomial Sets, Axioms 2018, 7(4), 71.
- Eric Weisstein's World of Mathematics, Set Partition
- Wikipedia, Partition of a set
- Index entries for linear recurrences with constant coefficients, signature (46,-906,9996,-67809,291774,-790964,1290824,-1136160,403200).
Cf.
A000110,
A048993,
A008291,
A098825,
A000012,
A000079,
A007051,
A007581,
A124303,
A056272,
A056273,
A099262,
A099263,
A164863.
-
# First program:
a:= n-> ceil(2119/11520*2^n +103/1680*3^n +53/3456*4^n +11/3600*5^n +6^n/1920 +7^n/15120 +8^n/80640 +10^n/3628800): seq(a(n), n=0..25);
# second program:
a:= n-> add(Stirling2(n, k), k=0..10): seq(a(n), n=0..25);
-
Table[Sum[StirlingS2[n,k],{k,0,10}],{n,0,30}] (* Harvey P. Dale, Nov 22 2023 *)
A208392
T(n,k)=Number of nXk 0..2 arrays with new values 0..2 introduced in row major order and no element equal to more than two of its immediate leftward or upward or right-upward antidiagonal neighbors.
Original entry on oeis.org
1, 2, 2, 5, 14, 5, 14, 117, 122, 14, 41, 1017, 3042, 1094, 41, 122, 8838, 76806, 79092, 9842, 122, 365, 76806, 1937736, 5800644, 2056392, 88574, 365, 1094, 667476, 48890520, 424785708, 438083928, 53466192, 797162, 1094, 3281, 5800644
Offset: 1
Some solutions for n=4 k=3
..0..0..1....0..0..0....0..0..0....0..0..0....0..0..0....0..0..1....0..0..1
..2..0..2....0..1..2....1..1..1....0..1..2....1..2..1....2..0..2....2..0..2
..1..0..2....0..0..0....1..0..0....2..0..0....0..2..2....2..2..0....0..2..2
..1..2..1....1..2..0....1..2..2....1..0..1....0..0..2....0..2..1....2..0..2
Comments