cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 204 results. Next

A233082 T(n,k)=Number of nXk 0..3 arrays with no element x(i,j) adjacent to value 3-x(i,j) horizontally or antidiagonally, top left element zero, and 1 appearing before 2 in row major order.

Original entry on oeis.org

1, 2, 3, 5, 14, 10, 14, 95, 122, 36, 41, 662, 1985, 1094, 136, 122, 4631, 32414, 41675, 9842, 528, 365, 32414, 529862, 1588262, 875165, 88574, 2080, 1094, 226895, 8662343, 60632429, 77824814, 18378455, 797162, 8256, 3281, 1588262, 141615905
Offset: 1

Views

Author

R. H. Hardin, Dec 03 2013

Keywords

Comments

Table starts
......1.........2.............5................14....................41
......3........14............95...............662..................4631
.....10.......122..........1985.............32414................529862
.....36......1094.........41675...........1588262..............60632429
....136......9842........875165..........77824814............6938214854
....528.....88574......18378455........3813415862..........793945203881
...2080....797162.....385947545......186857377214........90851753687090
...8256...7174454....8104898435.....9156011483462.....10396235291448605
..32896..64570082..170202867125...448644562689614...1189649113515482414
.131328.581130734.3574260209615.21983583571791062.136132453105625552657

Examples

			Some solutions for n=3 k=4
..0..1..3..1....0..1..3..1....0..0..0..1....0..0..1..1....0..0..1..0
..1..1..3..2....3..2..3..2....2..0..1..0....2..3..1..3....2..3..2..3
..3..3..2..3....3..3..3..2....2..3..1..3....1..1..3..2....1..3..1..0
		

Crossrefs

Column 1 is A007582(n-1)
Column 2 is A199560(n-1)
Row 1 is A007051(n-1)

Formula

Empirical for column k:
k=1: a(n) = 6*a(n-1) -8*a(n-2)
k=2: a(n) = 10*a(n-1) -9*a(n-2)
k=3: a(n) = 22*a(n-1) -21*a(n-2)
k=4: a(n) = 50*a(n-1) -49*a(n-2)
k=5: a(n) = 118*a(n-1) -411*a(n-2) +294*a(n-3)
k=6: a(n) = 283*a(n-1) -4251*a(n-2) +13573*a(n-3) -9604*a(n-4)
k=7: [order 6]
Empirical for row n:
n=1: a(n) = 4*a(n-1) -3*a(n-2)
n=2: a(n) = 8*a(n-1) -7*a(n-2) for n>3
n=3: a(n) = 19*a(n-1) -45*a(n-2) +27*a(n-3) for n>5
n=4: a(n) = 49*a(n-1) -450*a(n-2) +1466*a(n-3) -1853*a(n-4) +789*a(n-5) for n>8
n=5: [order 10] for n>14
n=6: [order 21] for n>26
n=7: [order 52] for n>58

A233098 T(n,k)=Number of nXk 0..3 arrays with no element x(i,j) adjacent to value 3-x(i,j) horizontally, diagonally or antidiagonally, top left element zero, and 1 appearing before 2 in row major order.

Original entry on oeis.org

1, 2, 3, 5, 11, 10, 14, 65, 74, 36, 41, 386, 941, 515, 136, 122, 2315, 11486, 13721, 3602, 528, 365, 13886, 141566, 342626, 200165, 25211, 2080, 1094, 83315, 1742447, 8714705, 10221326, 2920145, 176474, 8256, 3281, 499886, 21452183, 221113913
Offset: 1

Views

Author

R. H. Hardin, Dec 04 2013

Keywords

Comments

Table starts
......1........2............5..............14.................41
......3.......11...........65.............386...............2315
.....10.......74..........941...........11486.............141566
.....36......515........13721..........342626............8714705
....136.....3602.......200165........10221326..........537122150
....528....25211......2920145.......304926626........33113065637
...2080...176474.....42601181......9096692126......2041493495546
...8256..1235315....621496841....271376130626....125863931140721
..32896..8647202...9066845525...8095800458126...7759890074654654
.131328.60530411.132273701825.241517133090626.478420800866866973

Examples

			Some solutions for n=3 k=4
..0..1..0..1....0..1..1..0....0..1..1..0....0..1..3..3....0..1..1..0
..0..2..0..2....1..0..1..0....3..1..0..1....1..1..3..2....0..0..1..1
..3..1..0..1....0..0..0..0....0..1..1..1....3..1..0..2....0..1..1..0
		

Crossrefs

Column 1 is A007582(n-1)
Column 2 is A199417(n-1)
Row 1 is A007051(n-1)

Formula

Empirical for column k:
k=1: a(n) = 6*a(n-1) -8*a(n-2)
k=2: a(n) = 8*a(n-1) -7*a(n-2)
k=3: a(n) = 16*a(n-1) -21*a(n-2) +6*a(n-3)
k=4: a(n) = 31*a(n-1) -35*a(n-2) +5*a(n-3)
k=5: [order 11]
k=6: [order 22]
Empirical for row n:
n=1: a(n) = 4*a(n-1) -3*a(n-2)
n=2: a(n) = 6*a(n-1) +a(n-2) -6*a(n-3) for n>4
n=3: a(n) = 13*a(n-1) -5*a(n-2) -47*a(n-3) +52*a(n-4) -12*a(n-5) for n>6
n=4: [order 11] for n>12
n=5: [order 27] for n>28
n=6: [order 87] for n>88

A275266 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (-2,-1) (-2,1) or (-1,-1) and new values introduced in order 0..2.

Original entry on oeis.org

1, 2, 2, 5, 9, 5, 14, 54, 24, 14, 41, 324, 128, 64, 41, 122, 1944, 688, 396, 172, 122, 365, 11664, 3728, 2564, 1440, 476, 365, 1094, 69984, 20224, 17036, 13156, 5676, 1320, 1094, 3281, 419904, 109760, 114184, 126420, 73012, 22844, 3672, 3281, 9842
Offset: 1

Views

Author

R. H. Hardin, Jul 21 2016

Keywords

Comments

Table starts
....1.....2.......5.......14.........41..........122............365
....2.....9......54......324.......1944........11664..........69984
....5....24.....128......688.......3728........20224.........109760
...14....64.....396.....2564......17036.......114184.........767400
...41...172....1440....13156.....126420......1224088.......11894712
..122...476....5676....73012....1020324.....14005180......194398028
..365..1320...22844...409728....8391716....161725644.....3224773976
.1094..3672...93968..2315520...70863268...1922952988....56045462432
.3281.10220..389820.13124196..603245904..22903224024...981633748272
.9842.28472.1626348.74374784.5149743348.271600215464.17187870741644

Examples

			Some solutions for n=4 k=4
..0..1..2..1. .0..1..0..2. .0..1..2..2. .0..1..2..1. .0..1..0..1
..2..1..2..0. .0..2..0..1. .0..1..0..0. .2..1..2..1. .0..1..0..1
..2..1..0..1. .0..1..0..2. .2..1..0..1. .2..1..0..0. .0..2..0..1
..2..0..2..1. .1..2..0..1. .0..1..2..1. .2..0..0..1. .2..2..0..2
		

Crossrefs

Column 1 is A007051(n-1).
Row 1 is A007051(n-1).

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1) -3*a(n-2)
k=2: [order 9] for n>10
k=3: [order 14] for n>17
k=4: [order 43] for n>47
Empirical for row n:
n=1: a(n) = 4*a(n-1) -3*a(n-2)
n=2: a(n) = 6*a(n-1) for n>2
n=3: a(n) = 6*a(n-1) -2*a(n-2) -6*a(n-3) for n>4
n=4: a(n) = 8*a(n-1) -7*a(n-2) -9*a(n-3) -8*a(n-4) -12*a(n-5) +16*a(n-6) for n>7
n=5: [order 18] for n>19
n=6: [order 24] for n>26
n=7: [order 43] for n>45

A275401 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (-2,-1) (-2,0) or (-1,1) and new values introduced in order 0..2.

Original entry on oeis.org

1, 2, 2, 5, 9, 3, 14, 54, 16, 6, 41, 324, 84, 31, 12, 122, 1944, 444, 178, 63, 24, 365, 11664, 2344, 1011, 394, 129, 48, 1094, 69984, 12376, 5758, 2404, 1017, 260, 96, 3281, 419904, 65344, 32771, 14884, 8122, 2645, 534, 192, 9842, 2519424, 345008, 186538, 91849
Offset: 1

Views

Author

R. H. Hardin, Jul 26 2016

Keywords

Comments

Table starts
...1....2.....5......14.......41.......122.........365.........1094
...2....9....54.....324.....1944.....11664.......69984.......419904
...3...16....84.....444.....2344.....12376.......65344.......345008
...6...31...178....1011.....5758.....32771......186538......1061795
..12...63...394....2404....14884.....91849......566331......3495079
..24..129..1017....8122....65045....518049.....4142271.....33102260
..48..260..2645...27373...283169...2940064....30551417....317215507
..96..534..6980...94065..1266905..17159883...232200615...3146508594
.192.1083.18464..323306..5656712.100110527..1766745035..31272546310
.384.2210.48959.1109170.25396322.587134035.13518543301.312946900074

Examples

			Some solutions for n=4 k=4
..0..1..1..1. .0..0..1..1. .0..0..0..1. .0..1..1..2. .0..1..0..0
..2..2..0..1. .2..2..0..0. .1..2..2..0. .0..0..0..0. .0..2..1..1
..1..2..2..2. .1..2..2..0. .1..1..1..2. .1..2..2..0. .1..2..2..1
..1..0..1..2. .1..1..1..1. .0..0..0..1. .1..1..1..2. .1..1..0..0
		

Crossrefs

Column 1 is A003945(n-2).
Row 1 is A007051(n-1).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) for n>3
k=2: [order 9] for n>10
k=3: [order 24] for n>28
k=4: [order 65] for n>69
Empirical for row n:
n=1: a(n) = 4*a(n-1) -3*a(n-2)
n=2: a(n) = 6*a(n-1) for n>2
n=3: a(n) = 4*a(n-1) +6*a(n-2) +4*a(n-3)
n=4: a(n) = 3*a(n-1) +11*a(n-2) +25*a(n-3) +2*a(n-4) -24*a(n-5) for n>6
n=5: [order 9] for n>10
n=6: [order 16] for n>17
n=7: [order 21] for n>22

A276299 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (-2,-1) (-1,1) or (0,-1) and new values introduced in order 0..2.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 4, 12, 11, 14, 8, 36, 45, 31, 41, 16, 108, 173, 189, 88, 122, 32, 324, 693, 1017, 805, 250, 365, 64, 972, 2765, 5909, 5965, 3437, 710, 1094, 128, 2916, 11061, 33461, 50949, 34865, 14693, 2016, 3281, 256, 8748, 44237, 191289, 408105, 442001
Offset: 1

Views

Author

R. H. Hardin, Aug 28 2016

Keywords

Comments

Table starts
....1.....1.......2........4..........8...........16............32
....2.....4......12.......36........108..........324...........972
....5....11......45......173........693.........2765.........11061
...14....31.....189.....1017.......5909........33461........191289
...41....88.....805.....5965......50949.......408105.......3363533
..122...250....3437....34865.....442001......4988145......59728757
..365...710...14693...203933....3861469.....61239977....1073114625
.1094..2016...62829..1192701...33851605....752660245...19398127957
.3281..5724..268677..6974781..297360321...9254592049..352134188049
.9842.16252.1148973.40786925.2615328377.113817204341.6411366745009

Examples

			Some solutions for n=4 k=4
..0..1..0..2. .0..1..2..0. .0..1..0..1. .0..1..0..1. .0..1..0..1
..0..1..0..1. .2..1..2..1. .0..1..2..1. .0..1..0..1. .0..1..0..2
..0..2..0..1. .2..1..2..0. .2..1..0..1. .2..1..2..1. .0..2..0..2
..0..1..0..2. .0..1..2..0. .0..1..2..0. .0..1..0..1. .1..2..0..1
		

Crossrefs

Column 1 is A007051(n-1).
Row 1 is A000079(n-2).
Row 2 is A003946(n-1).

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1) -3*a(n-2)
k=2: a(n) = 4*a(n-1) -4*a(n-2) +2*a(n-3) for n>4
k=3: a(n) = 6*a(n-1) -8*a(n-2) +4*a(n-3) -7*a(n-4) +6*a(n-5) for n>7
k=4: [order 11] for n>13
k=5: [order 33] for n>37
k=6: [order 70] for n>75
Empirical for row n:
n=1: a(n) = 2*a(n-1) for n>2
n=2: a(n) = 3*a(n-1) for n>2
n=3: a(n) = 4*a(n-1) +a(n-2) -4*a(n-3) for n>4
n=4: a(n) = 4*a(n-1) +10*a(n-2) -6*a(n-4) -22*a(n-5) +15*a(n-6) for n>8
n=5: [order 15] for n>17
n=6: [order 30] for n>32
n=7: [order 59] for n>61

A080934 Square array read by antidiagonals of number of Catalan paths (nonnegative, starting and ending at 0, step +/-1) of 2n steps with all values less than or equal to k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 4, 1, 0, 1, 1, 2, 5, 8, 1, 0, 1, 1, 2, 5, 13, 16, 1, 0, 1, 1, 2, 5, 14, 34, 32, 1, 0, 1, 1, 2, 5, 14, 41, 89, 64, 1, 0, 1, 1, 2, 5, 14, 42, 122, 233, 128, 1, 0, 1, 1, 2, 5, 14, 42, 131, 365, 610, 256, 1, 0, 1, 1, 2, 5, 14, 42, 132, 417, 1094, 1597, 512, 1, 0
Offset: 0

Views

Author

Henry Bottomley, Feb 25 2003

Keywords

Comments

Number of permutations in S_n avoiding both 132 and 123...k.
T(n,k) = number of rooted ordered trees on n nodes of depth <= k. Also, T(n,k) = number of {1,-1} sequences of length 2n summing to 0 with all partial sums are >=0 and <= k. Also, T(n,k) = number of closed walks of length 2n on a path of k nodes starting from (and ending at) a node of degree 1. - Mitch Harris, Mar 06 2004
Also T(n,k) = k-th coefficient in expansion of the rational function R(n), where R(1) = 1, R(n+1) = 1/(1-x*R(n)), which means also that lim(n->inf,R(n)) = g.f. of Catalan numbers (A000108) wherever it has real value (see Mansour article). - Clark Kimberling and Ralf Stephan, May 26 2004
Row n of the array gives Taylor series expansion of F_n(t)/F_{n+1}(t), where F_n(t) are the Fibonacci polynomials defined in A259475 [Kreweras, 1970]. - N. J. A. Sloane, Jul 03 2015

Examples

			T(3,2) = 4 since the paths of length 2*3 (7 points) with all values less than or equal to 2 can take the routes 0101010, 0101210, 0121010 or 0121210, but not 0123210.
From _Peter Luschny_, Aug 27 2014: (Start)
Trees with n nodes and height <= h:
h\n  1  2  3  4   5   6    7    8     9    10     11
---------------------------------------------------------
[ 1] 1, 0, 0, 0,  0,  0,   0,   0,    0,    0,     0, ...  A063524
[ 2] 1, 1, 1, 1,  1,  1,   1,   1,    1,    1,     1, ...  A000012
[ 3] 1, 1, 2, 4,  8, 16,  32,  64,  128,  256,   512, ...  A011782
[ 4] 1, 1, 2, 5, 13, 34,  89, 233,  610, 1597,  4181, ...  A001519
[ 5] 1, 1, 2, 5, 14, 41, 122, 365, 1094, 3281,  9842, ...  A124302
[ 6] 1, 1, 2, 5, 14, 42, 131, 417, 1341, 4334, 14041, ...  A080937
[ 7] 1, 1, 2, 5, 14, 42, 132, 428, 1416, 4744, 16016, ...  A024175
[ 8] 1, 1, 2, 5, 14, 42, 132, 429, 1429, 4846, 16645, ...  A080938
[ 9] 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4861, 16778, ...  A033191
[10] 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16795, ...  A211216
---------------------------------------------------------
The generating functions are listed in A211216. Note that the values up to the main diagonal are the Catalan numbers A000108.
(End)
		

Crossrefs

Cf. A000108, A079214, A080935, A080936. Rows include A000012, A057427, A040000 (offset), columns include (essentially) A000007, A000012, A011782, A001519, A007051, A080937, A024175, A080938, A033191, A211216. Main diagonal is A000108.
Cf. A094718 (involutions). Cf. also A259475.

Programs

  • Maple
    # As a triangular array:
    b:= proc(x, y, k) option remember; `if`(y>min(k, x) or y<0, 0,
          `if`(x=0, 1, b(x-1, y-1, k)+ b(x-1, y+1, k)))
        end:
    A:= (n, k)-> b(2*n, 0, k):
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Aug 06 2012
    # As a square array:
    A := proc(n,k) option remember; local j; if n = 1 then 1 elif k = 1 then 0 else add(A(n-j,k)*A(j,k-1), j=1..n-1) fi end:
    linalg[matrix](10, 12, (n,k) -> A(k,n)); # Peter Luschny, Aug 27 2014
  • Mathematica
    A[n_, k_] := A[n, k] = Which[n == 1, 1, k == 1, 0, True, Sum[A[n-j, k]*A[j, k-1], {j, 1, n-1}]]; Table[A[k-n+1, n], {k, 1, 13}, {n, k, 1, -1}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Peter Luschny *)
  • PARI
    A(N, K) = {
      my(m = matrix(N, K, n, k, n==1));
      for (n = 2, N,
      for (k = 2, K,
           m[n,k] = sum(i = 1, n-1, m[n-i,k] * m[i,k-1])));
      return(m);
    }
    A(11,10)~  \\ Gheorghe Coserea, Jan 13 2016

Formula

T(n, k) = Sum_{0A080935(n, k) = T(n, k-1)+A080936(n, k); for k>=n T(n, k) = A000108(n).
T(n, k) = 2^(2n+1)/(k+2) * Sum_{i=1..k+1} (sin(Pi*i/(k+2))*cos(Pi*i/(k+2))^n)^2 for n>=1. - Herbert Kociemba, Apr 28 2004
G.f. of n-th row: B(n)/B(n+1) where B(j)=[(1+sqrt(1-4x))/2]^j-[(1-sqrt(1-4x))/2]^j.

A083064 Square number array T(n,k) = (k*(k+2)^n+1)/(k+1) read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 11, 14, 1, 1, 5, 19, 43, 41, 1, 1, 6, 29, 94, 171, 122, 1, 1, 7, 41, 173, 469, 683, 365, 1, 1, 8, 55, 286, 1037, 2344, 2731, 1094, 1, 1, 9, 71, 439, 2001, 6221, 11719, 10923, 3281, 1, 1, 10, 89, 638, 3511, 14006, 37325, 58594, 43691, 9842, 1
Offset: 0

Views

Author

Paul Barry, Apr 21 2003

Keywords

Examples

			Rows begin:
1  1   1    1     1      1       1        1         1 ...
1  2   5   14    41    122     365     1094      3281 ...  A007051
1  3  11   43   171    683    2731    10923     43691 ...  A007583
1  4  19   94   469   2344   11719    58594    292969 ...  A083065
1  5  29  173  1037   6221   37325   223949   1343693 ...  A083066
1  6  41  286  2001  14006   98041   686286   4804001 ...  A083067
1  7  55  439  3511  28087  224695  1797559  14380471 ...  A083068
1  8  71  638  5741  51668  465011  4185098  37665881 ...  A187709
1  9  89  889  8889  88889  888889  8888889  88888889 ...  A059482
1 10 109 1198 13177 144946 1594405 17538454 192922993 ...  A199760, etc.
Column 2: A000027;
column 3: A028387;
column 4: A083074;
column 5: A125082;
column 6: A125083.
Diagonals:
1,  2,  11,   94,  1037,  14006, ... A083069;
1,  3,  19,  173,  2001,  28087, ... A083071;
1,  4,  29,  286,  3511,  51668, ... A083072;
1,  5,  41,  439,  5741,  88889, ... A083073;
1,  5,  43,  469,  6221,  98041, ... A083070;
1, 14, 171, 2344, 37325, 686286, ... A191690.
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 5, 1;
1, 4, 11, 14, 1;
1, 5, 19, 43, 41, 1;
1, 6, 29, 94, 171, 122, 1; etc.
		

Crossrefs

Extensions

Edited by Bruno Berselli, Jun 21 2013

A115099 a(0)=4, a(n) = 3*a(n-1) - 4.

Original entry on oeis.org

4, 8, 20, 56, 164, 488, 1460, 4376, 13124, 39368, 118100, 354296, 1062884, 3188648, 9565940, 28697816, 86093444, 258280328, 774840980, 2324522936, 6973568804, 20920706408, 62762119220, 188286357656, 564859072964, 1694577218888, 5083731656660, 15251194969976
Offset: 0

Views

Author

Miklos Kristof, Mar 02 2006

Keywords

Comments

A tetrahedron has 4 faces. Cut every corner so that we get triangular faces; the resulting polyhedron has 8 faces. Repeating this procedure gives polyhedra with 4, 8, 20, 56, etc. faces.

Crossrefs

Programs

Formula

a(n) = 2*3^n + 2.
From Colin Barker, May 31 2016: (Start)
a(n) = 4*a(n-1)-3*a(n-2) for n>1.
G.f.: 4*(1-2*x) / ((1-x)*(1-3*x)).
(End)
E.g.f.: 2*(1 + exp(2*x))*exp(x). - Ilya Gutkovskiy, May 31 2016
a(n) = 4 * A007051(n). - Alois P. Heinz, Jun 26 2023

A119467 A masked Pascal triangle.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 1, 0, 6, 0, 1, 0, 5, 0, 10, 0, 1, 1, 0, 15, 0, 15, 0, 1, 0, 7, 0, 35, 0, 21, 0, 1, 1, 0, 28, 0, 70, 0, 28, 0, 1, 0, 9, 0, 84, 0, 126, 0, 36, 0, 1, 1, 0, 45, 0, 210, 0, 210, 0, 45, 0, 1, 0, 11, 0, 165, 0, 462, 0, 330, 0, 55, 0, 1, 1, 0, 66, 0, 495, 0, 924
Offset: 0

Views

Author

Paul Barry, May 21 2006

Keywords

Comments

Row sums are A011782. Diagonal sums are F(n+1)*(1+(-1)^n)/2 (aerated version of A001519). Product by Pascal's triangle A007318 is A119468. Schur product of (1/(1-x),x/(1-x)) and (1/(1-x^2),x).
Exponential Riordan array (cosh(x),x). Inverse is (sech(x),x) or A119879. - Paul Barry, May 26 2006
Rows give coefficients of polynomials p_n(x) = Sum_{k=0..n} (k+1 mod 2)*binomial(n,k)*x^(n-k) having e.g.f. exp(x*t)*cosh(t)= 1*(t^0/0!) + x*(t^1/1!) + (1+x^2)*(t^2/2!) + ... - Peter Luschny, Jul 14 2009
Inverse of the coefficient matrix of the Swiss-Knife polynomials in ascending order of x^i (reversed and aerated rows of A153641). - Peter Luschny, Jul 16 2012
Call this array M and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/ having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. The infinite matrix product M(0)*M(1)*M(2)*... is equal to A136630 but with the first row and column omitted. - Peter Bala, Jul 28 2014
The row polynomials SKv(n,x) = [(x+1)^n + (x-1)^n]/2 , with e.g.f. cosh(t)*exp(xt), are the umbral compositional inverses of the row polynomials of A119879 (basically the Swiss Knife polynomials SK(n,x) of A153641); i.e., umbrally SKv(n,SK(.,x)) = x^n = SK(n,SKv(.,x)). Therefore, this entry's matrix and A119879 are an inverse pair. Both sequences of polynomials are Appell sequences, i.e., d/dx P(n,x) = n * P(n-1,x) and (P(.,x)+y)^n = P(n,x+y). In particular, (SKv(.,0)+x)^n = SKv(n,x), reflecting that the first column has the e.g.f. cosh(t). The raising operator is R = x + tanh(d/dx); i.e., R SKv(n,x) = SKv(n+1,x). The coefficients of this operator are basically the signed and aerated zag numbers A000182, which can be expressed as normalized Bernoulli numbers. The triangle is formed by multiplying the n-th diagonal of the lower triangular Pascal matrix by the Taylor series coefficient a(n) of cosh(x). More relations for this type of triangle and its inverse are given by the formalism of A133314. - Tom Copeland, Sep 05 2015
The signed version of this matrix has the e.g.f. cos(t) e^{xt}, generating Appell polynomials that have only real, simple zeros and whose extrema are maxima above the x-axis and minima below and situated above and below the zeros of the next lower degree polynomial. The bivariate versions appear on p. 27 of Dimitrov and Rusev in conditions for entire functions that are cosine transforms of a class of functions to have only real zeros. - Tom Copeland, May 21 2020
The n-th row of the triangle is obtained by multiplying by 2^(n-1) the elements of the first row of the limit as k approaches infinity of the stochastic matrix P^(2k-1) where P is the stochastic matrix associated with the Ehrenfest model with n balls. The elements of a stochastic matrix P give the probabilities of arriving in a state j given the previous state i. In particular the sum of every row of the matrix must be 1, and so the sum of the terms of the n-th row of this triangle is 2^(n-1). Furthermore, by the properties of Markov chains, we can interpret P^(2k-1) as the (2k-1)-step transition matrix of the Ehrenfest model and its limit exists and it is again a stochastic matrix. The rows of the triangle divided by 2^(n-1) are the even rows (second, fourth, ...) and the odd rows (first, third, ...) of the limit matrix P^(2k-1). - Luca Onnis, Oct 29 2023

Examples

			Triangle begins
  1,
  0, 1,
  1, 0,  1,
  0, 3,  0,  1,
  1, 0,  6,  0,   1,
  0, 5,  0, 10,   0,   1,
  1, 0, 15,  0,  15,   0,   1,
  0, 7,  0, 35,   0,  21,   0,  1,
  1, 0, 28,  0,  70,   0,  28,  0,  1,
  0, 9,  0, 84,   0, 126,   0, 36,  0, 1,
  1, 0, 45,  0, 210,   0, 210,  0, 45, 0, 1
p[0](x) = 1
p[1](x) = x
p[2](x) = 1 + x^2
p[3](x) = 3*x + x^3
p[4](x) = 1 + 6*x^2 + x^4
p[5](x) = 5*x + 10*x^3 + x^5
Connection with A136630: With the arrays M(k) as defined in the Comments section, the infinite product M(0)*M(1)*M(2)*... begins
/1        \/1        \/1        \      /1         \
|0 1      ||0 1      ||0 1      |      |0 1       |
|1 0 1    ||0 0 1    ||0 0 1    |... = |1 0  1    |
|0 3 0 1  ||0 1 0 1  ||0 0 0 1  |      |0 4  0 1  |
|1 0 6 0 1||0 0 3 0 1||0 0 1 0 1|      |1 0 10 0 1|
|...      ||...      ||...      |      |...       |
- _Peter Bala_, Jul 28 2014
		

References

  • Paul and Tatjana Ehrenfest, Über zwei bekannte Einwände gegen das Boltzmannsche H-Theorem, Physikalische Zeitschrift, vol. 8 (1907), pp. 311-314.

Crossrefs

From Peter Luschny, Jul 14 2009: (Start)
p[n](k), n=0,1,...
k= 0: 1, 0, 1, 0, 1, 0, ... A128174
k= 1: 1, 1, 2, 4, 8, 16, ... A011782
k= 2: 1, 2, 5, 14, 41, 122, ... A007051
k= 3: 1, 3, 10, 36, 136, ... A007582
k= 4: 1, 4, 17, 76, 353, ... A081186
k= 5: 1, 5, 26, 140, 776, ... A081187
k= 6: 1, 6, 37, 234, 1513, ... A081188
k= 7: 1, 7, 50, 364, 2696, ... A081189
k= 8: 1, 8, 65, 536, 4481, ... A081190
k= 9: 1, 9, 82, 756, 7048, ... A060531
k=10: 1, 10, 101, 1030, ... A081192
p[n](k), k=0,1,...
p[0]: 1,1,1,1,1,1, ....... A000012
p[1]: 0,1,2,3,4,5, ....... A001477
p[2]: 1,2,5,10,17,26, .... A002522
p[3]: 0,4,14,36,76,140, .. A079908 (End)

Programs

  • Haskell
    a119467 n k = a119467_tabl !! n !! k
    a119467_row n = a119467_tabl !! n
    a119467_tabl = map (map (flip div 2)) $
                   zipWith (zipWith (+)) a007318_tabl a130595_tabl
    -- Reinhard Zumkeller, Mar 23 2014
    
  • Magma
    /* As triangle */ [[Binomial(n, k)*(1 + (-1)^(n - k))/2: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 26 2015
  • Maple
    # Polynomials: p_n(x)
    p := proc(n,x) local k, pow; pow := (n,k) -> `if`(n=0 and k=0,1,n^k);
    add((k+1 mod 2)*binomial(n,k)*pow(x,n-k),k=0..n) end;
    # Coefficients: a(n)
    seq(print(seq(coeff(i!*coeff(series(exp(x*t)*cosh(t),t,16),t,i),x,n),n=0..i)),i=0..8); # Peter Luschny, Jul 14 2009
  • Mathematica
    Table[Binomial[n, k] (1 + (-1)^(n - k))/2, {n, 0, 12}, {k, 0, n}] // Flatten (* Michael De Vlieger, Sep 06 2015 *)
    n = 15; "n-th row"
    mat = Table[Table[0, {j, 1, n + 1}], {i, 1, n + 1}];
    mat[[1, 2]] = 1;
    mat[[n + 1, n]] = 1;
    For[i = 2, i <= n, i++, mat[[i, i - 1]] = (i - 1)/n ];
    For[i = 2, i <= n, i++, mat[[i, i + 1]] = (n - i + 1)/n];
    mat // MatrixForm;
    P2 = Dot[mat, mat];
    R1 = Simplify[
      Eigenvectors[Transpose[P2]][[1]]/
       Total[Eigenvectors[Transpose[P2]][[1]]]]
    R2 = Table[Dot[R1, Transpose[mat][[k]]], {k, 1, n + 1}]
    odd = R2*2^(n - 1) (* _Luca Onnis *)
  • Sage
    @CachedFunction
    def A119467_poly(n):
        R = PolynomialRing(ZZ, 'x')
        x = R.gen()
        return R.one() if n==0 else R.sum(binomial(n,k)*x^(n-k) for k in range(0,n+1,2))
    def A119467_row(n):
        return list(A119467_poly(n))
    for n in (0..10) : print(A119467_row(n)) # Peter Luschny, Jul 16 2012
    

Formula

G.f.: (1-x*y)/(1-2*x*y-x^2+x^2*y^2);
T(n,k) = C(n,k)*(1+(-1)^(n-k))/2;
Column k has g.f. (1/(1-x^2))*(x/(1-x^2))^k*Sum_{j=0..k+1} binomial(k+1,j)*sin((j+1)*Pi/2)^2*x^j.
Column k has e.g.f. cosh(x)*x^k/k!. - Paul Barry, May 26 2006
Let Pascal's triangle, A007318 = P; then this triangle = (1/2) * (P + 1/P). Also A131047 = (1/2) * (P - 1/P). - Gary W. Adamson, Jun 12 2007
Equals A007318 - A131047 since the zeros of the triangle are masks for the terms of A131047. Thus A119467 + A131047 = Pascal's triangle. - Gary W. Adamson, Jun 12 2007
T(n,k) = (A007318(n,k) + A130595(n,k))/2, 0<=k<=n. - Reinhard Zumkeller, Mar 23 2014

Extensions

Edited by N. J. A. Sloane, Jul 14 2009

A222573 T(n,k)=Number of nXk 0..2 arrays with no more than floor(nXk/2) elements unequal to at least one horizontal, diagonal or antidiagonal neighbor, with new values introduced in row major 0..2 order.

Original entry on oeis.org

1, 1, 2, 1, 1, 5, 4, 5, 5, 14, 5, 10, 11, 18, 41, 14, 25, 56, 120, 59, 122, 17, 128, 134, 435, 500, 200, 365, 70, 292, 1500, 3516, 4790, 5210, 820, 1094, 89, 1318, 3999, 25441, 30766, 50535, 20889, 3014, 3281, 326, 3640, 46250, 212957, 543064, 881766, 547563
Offset: 1

Views

Author

R. H. Hardin Feb 25 2013

Keywords

Comments

Table starts
.....1......1.........1..........4...........5...........14...........17
.....2......1.........5.........10..........25..........128..........292
.....5......5........11.........56.........134.........1500.........3999
....14.....18.......120........435........3516........25441.......212957
....41.....59.......500.......4790.......30766.......543064......4102865
...122....200......5210......50535......881766.....14120189....278335019
...365....820.....20889.....547563.....9004283....406233879...7240361264
..1094...3014....229894....5815939...287554360..12231597130.617491399888
..3281..11364....913405...63130202..2996904309.379056994144
..9842..42748..10427244..676152734.97314847813
.29525.164652..40896923.7328771224
.88574.627034.479942958

Examples

			Some solutions for n=3 k=4
..0..0..0..0....0..1..1..1....0..0..0..0....0..0..1..1....0..0..1..1
..0..0..0..0....2..1..1..1....0..0..0..0....1..1..1..1....0..0..1..1
..1..2..0..0....2..1..1..1....1..0..0..1....1..1..1..1....0..0..1..1
		

Crossrefs

Column 1 is A007051(n-1)
Row 1 is A222364
Previous Showing 51-60 of 204 results. Next