cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 321 results. Next

A110594 a(1) = 4, a(2) = 12, for n>1: a(n) = 3*4^(n-1).

Original entry on oeis.org

4, 12, 48, 192, 768, 3072, 12288, 49152, 196608, 786432, 3145728, 12582912, 50331648, 201326592, 805306368, 3221225472, 12884901888, 51539607552, 206158430208, 824633720832, 3298534883328, 13194139533312, 52776558133248
Offset: 1

Views

Author

Jonathan Vos Post, Jul 29 2005

Keywords

Crossrefs

Programs

  • GAP
    Concatenation([4],List([2..25],n->3*4^(n-1))); # Muniru A Asiru, Oct 21 2018
  • Magma
    [4] cat [3*4^(n-1): n in [2..30]]; // Vincenzo Librandi, May 29 2014
    
  • Maple
    seq(coeff(series(4*x*(1-x)/(1-4*x),x,n+1), x, n), n = 1 .. 25); # Muniru A Asiru, Oct 21 2018
  • Mathematica
    CoefficientList[Series[4 (1 - x)/(1 - 4 x), {x, 0, 40}], x] (* Vincenzo Librandi, May 29 2014 *)
  • PARI
    x='x+O('x^50); Vec(4*x*(1 - x)/(1 - 4*x)) \\ G. C. Greubel, Sep 01 2017
    

Formula

a(n) = A002001(n), n>1. - R. J. Mathar, Aug 18 2008
G.f.: 4*x*(1 - x)/(1 - 4*x). - Vincenzo Librandi, May 29 2014

Extensions

Definition corrected by R. J. Mathar, Aug 18 2008

A117640 Concatenation of first n numbers in base 4.

Original entry on oeis.org

1, 12, 123, 12310, 1231011, 123101112, 12310111213, 1231011121320, 123101112132021, 12310111213202122, 1231011121320212223, 123101112132021222330, 12310111213202122233031
Offset: 1

Views

Author

Jonathan Vos Post, Apr 27 2006

Keywords

Comments

Concatenation of the first n terms of A007090.
Base-4 analog of A058935.

Crossrefs

Other bases: A058935 (2), A360502 (3), A007908 (10).

Programs

  • Mathematica
    Table[FromDigits[Flatten[Table[IntegerDigits[n,4],{n,k}]]],{k,15}] (* Harvey P. Dale, Jan 18 2023 *)
  • Python
    from gmpy2 import digits
    def A117640(n): return int(''.join(digits(n,4) for n in range(1,n+1))) # Chai Wah Wu, Apr 19 2023

Extensions

Edited by Jason Kimberley, Nov 27 2012

A160382 Number of 2's in base-4 representation of n.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 2, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 2, 1, 0, 0, 1, 0, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 3, 2, 1, 1, 2, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 2, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 2, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 2, 1, 0, 0, 1, 0, 1, 1, 2, 1, 1, 1, 2, 1, 2
Offset: 0

Views

Author

Frank Ruskey, Jun 05 2009

Keywords

Crossrefs

Cf. A007090.

Programs

  • Mathematica
    DigitCount[Range[0,110],4,2] (* Harvey P. Dale, Sep 09 2024 *)
  • PARI
    a(n) = #select(x->(x==2), digits(n, 4)); \\ Michel Marcus, Mar 24 2020

Formula

Recurrence relation: a(0) = 0, a(4m+2) = 1+a(m), a(4m) = a(4m+1) = a(4m+3) = a(m).
G.f.: (1/(1-z))*Sum_{m>=0} (z^(2*4^m)*(1 - z^(4^m))/(1 - z^(4^(m+1)))).
Morphism: 0, j -> j,j,j+1,j; e.g., 0 -> 0010 -> 0010110111210010 -> ...

A239690 Base 4 sum of digits of prime(n).

Original entry on oeis.org

2, 3, 2, 4, 5, 4, 2, 4, 5, 5, 7, 4, 5, 7, 8, 5, 8, 7, 4, 5, 4, 7, 5, 5, 4, 5, 7, 8, 7, 5, 10, 5, 5, 7, 5, 7, 7, 7, 8, 8, 8, 7, 11, 4, 5, 7, 7, 10, 8, 7, 8, 11, 7, 11, 2, 5, 5, 7, 4, 5, 7, 5, 7, 8, 7, 8, 7, 4, 8, 7, 5, 8, 10, 7, 10, 11, 5, 7, 5, 7, 8, 7, 11, 7
Offset: 1

Views

Author

Tom Edgar, Mar 24 2014

Keywords

Comments

a(n) is the rank of prime(n) in the base-4 dominance order on the natural numbers.

Examples

			The sixth prime is 13, 13 in base 4 is (3,1) so a(6)=3+1=4.
		

Crossrefs

Programs

  • Haskell
    a239690 = a053737 . a000040  -- Reinhard Zumkeller, Mar 20 2015
  • Magma
    [&+Intseq(NthPrime(n),4): n in [1..100]]; // Vincenzo Librandi, Mar 25 2014
    
  • Mathematica
    Table[Plus @@ IntegerDigits[Prime[n], 4], {n, 1, 100}] (* Vincenzo Librandi, Mar 25 2014 *)
  • Sage
    [sum(i.digits(base=4)) for i in primes_first_n(200)]
    

Formula

a(n) = A053737(A000040(n)).

A262101 Pseudoprimes to base 4, written in base 4.

Original entry on oeis.org

33, 1111, 1123, 11111, 12303, 13003, 20301, 22011, 22333, 101101, 103133, 103313, 111223, 120231, 122133, 123001, 131203, 131301, 133333, 200113, 212201, 222031, 230011, 300331, 303031, 310213, 321203, 333001, 1010101, 1010103, 1021021, 1022323, 1023323, 1111111, 1112233, 1213021, 1213303, 1330111, 2002001, 2010201, 2013313, 2023033, 2031211, 2032223
Offset: 1

Views

Author

Abdul Gaffar Khan, Sep 11 2015

Keywords

Crossrefs

Cf. A007090 (numbers in base 4), A020136 (pseudoprimes to base 4).

Programs

  • Mathematica
    BaseForm[Select[Range[4096], Not[PrimeQ[#]] && PowerMod[4, # - 1, #] == 1 &], 4]
  • PARI
    lista(nn, b=4) = {for (n=1, nn, if (Mod(b, n)^(n-1)==1 && !ispseudoprime(n) && n>1, print1(subst(Pol(digits(n,b), x), x, 10), ", ");););} \\ Michel Marcus, Sep 30 2015

Formula

a(n) = A007090(A020136(n)).

A292371 A binary encoding of 1-digits in the base-4 representation of n.

Original entry on oeis.org

0, 1, 0, 0, 2, 3, 2, 2, 0, 1, 0, 0, 0, 1, 0, 0, 4, 5, 4, 4, 6, 7, 6, 6, 4, 5, 4, 4, 4, 5, 4, 4, 0, 1, 0, 0, 2, 3, 2, 2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 3, 2, 2, 0, 1, 0, 0, 0, 1, 0, 0, 8, 9, 8, 8, 10, 11, 10, 10, 8, 9, 8, 8, 8, 9, 8, 8, 12, 13, 12, 12, 14, 15, 14, 14, 12, 13, 12, 12, 12, 13, 12, 12, 8, 9, 8, 8, 10, 11, 10, 10, 8, 9, 8, 8, 8, 9, 8, 8, 8
Offset: 0

Views

Author

Antti Karttunen, Sep 15 2017

Keywords

Examples

			   n      a(n)     base-4(n)  binary(a(n))
                  A007090(n)  A007088(a(n))
  --      ----    ----------  ------------
   1        1          1           1
   2        0          2           0
   3        0          3           0
   4        2         10          10
   5        3         11          11
   6        2         12          10
   7        2         13          10
   8        0         20           0
   9        1         21           1
  10        0         22           0
  11        0         23           0
  12        0         30           0
  13        1         31           1
  14        0         32           0
  15        0         33           0
  16        4        100         100
  17        5        101         101
  18        4        102         100
		

Crossrefs

Cf. A289813 (analogous sequence for base 3).

Programs

  • Mathematica
    Table[FromDigits[IntegerDigits[n, 4] /. k_ /; IntegerQ@ k :> If[k == 1, 1, 0], 2], {n, 0, 112}] (* Michael De Vlieger, Sep 21 2017 *)
  • Python
    from sympy.ntheory.factor_ import digits
    def a(n):
        k=digits(n, 4)[1:]
        return 0 if n==0 else int("".join('1' if i==1 else '0' for i in k), 2)
    print([a(n) for n in range(116)]) # Indranil Ghosh, Sep 21 2017
    
  • Python
    def A292371(n): return int(bin(n&~(n>>1))[:1:-2][::-1],2) # Chai Wah Wu, Jun 30 2022

Formula

a(n) = A059905(A292272(n)) = A059905(n AND A003188(n)), where AND is bitwise-AND (A004198).
For all n >= 0, A000120(a(n)) = A160381(n).

A293657 Base-4 circular primes that are not base-4 repunits.

Original entry on oeis.org

7, 13, 23, 29, 53, 383, 509, 863, 983, 1013
Offset: 1

Views

Author

Felix Fröhlich, Oct 28 2017

Keywords

Comments

Conjecture: The sequence is finite, with 1013 being the last term (see A293142).
Written in base 4 (A007090), the terms are 13, 31, 113, 131, 311, 11333, 13331, 31133, 33113, 33311. - Antti Karttunen, Nov 26 2017
From Michael De Vlieger, Dec 30 2017: (Start)
The digits of primes in this sequence must be in the reduced residue system modulo 4, i.e., {1, 3}.
a(11), if it exists, must be larger than 4^21 = 4398046511104. (End)

Examples

			53 written in base 4 is 311. The base-4 numbers 311, 131, 113 written in base 10 are 53, 29, 23, respectively and all those numbers are prime, so 23, 29 and 53 are terms of the sequence.
		

Crossrefs

Cf. base-b nonrepunit circular primes: A293658 (b=5), A293659 (b=6), A293660 (b=7), A293661 (b=8), A293662 (b=9), A293663 (b=10).

Programs

  • Mathematica
    With[{b = 4}, Select[Array[Map[If[Union@ # == {1}, 0, FromDigits[#, b]] &, NestList[RotateLeft, #, Length@ # - 1]] &@ IntegerDigits[Prime@ #, b] &, 10^6, If[PrimeQ@ b, #, # + 1] &@ PrimePi@ b], AllTrue[#, PrimeQ] &][[All, 1]] ] (* Michael De Vlieger, Nov 26 2017 *)
    With[{b = 4}, Select[Flatten@ Array[FromDigits[#, b] & /@ Most@ Rest@ Tuples[{1, 3}, #] &, 18, 2], Function[w, And[ AllTrue[ Array[ FromDigits[ RotateRight[w, #], b] &, Length@ w], PrimeQ], Union@ w != {1} ]]@ IntegerDigits[#, b] &]] (* Michael De Vlieger, Dec 30 2017 *)
  • PARI
    rot(n) = if(#Str(n)==1, v=vector(1), v=vector(#n-1)); for(i=2, #n, v[i-1]=n[i]); u=vector(#n); for(i=1, #n, u[i]=n[i]); v=concat(v, u[1]); v
    decimal(v, base) = my(w=[]); for(k=0, #v-1, w=concat(w, v[#v-k]*base^k)); sum(i=1, #w, w[i])
    is_circularprime(p, base) = my(db=digits(p, base), r=rot(db), i=0); if(vecmin(db)==0, return(0), while(1, dec=decimal(r, base); if(!ispseudoprime(dec), return(0)); r=rot(r); if(r==db, return(1))))
    forprime(p=1, , if(vecmin(digits(p, 4))!=vecmax(digits(p, 4)), if(is_circularprime(p, 4), print1(p, ", "))))

A353112 Base-4 representation of A000422(n).

Original entry on oeis.org

1, 111, 11001, 1003201, 31100301, 2133233301, 131030232301, 11032113332301, 322313212202301, 22032322210302301, 100022230001210102301, 123202121121121130102301, 232213121102313132210102301, 1032130122202213111001210102301
Offset: 1

Views

Author

Seiichi Manyama, Apr 24 2022

Keywords

Crossrefs

Programs

  • Ruby
    def A(k, n)
      (1..n).map{|i| (1..i).to_a.reverse.join.to_i.to_s(k).to_i}
    end
    p A(4, 20)

Formula

a(n) = A007090(A000422(n)).

A004053 For m=2,3,..., write m in bases 2,3,..,m.

Original entry on oeis.org

10, 11, 10, 100, 11, 10, 101, 12, 11, 10, 110, 20, 12, 11, 10, 111, 21, 13, 12, 11, 10, 1000, 22, 20, 13, 12, 11, 10, 1001, 100, 21, 14, 13, 12, 11, 10, 1010, 101, 22, 20, 14, 13, 12, 11, 10, 1011, 102, 23, 21, 15, 14, 13, 12, 11, 10, 1100, 110, 30, 22, 20, 15, 14, 13, 12, 11, 10
Offset: 2

Views

Author

Johan Boye (johbo(AT)ida.liu.se)

Keywords

Examples

			Triangle begins:
    10;
    11,  10;
   100,  11, 10;
   101,  12, 11, 10;
   110,  20, 12, 11, 10;
   111,  21, 13, 12, 11, 10;
  1000,  22, 20, 13, 12, 11, 10;
  1001, 100, 21, 14, 13, 12, 11, 10;
  ...
		

Crossrefs

Programs

  • Mathematica
    FromDigits/@Flatten[Table[IntegerDigits[m,b],{m,2,20},{b,2,m}],1] (* Harvey P. Dale, Dec 01 2024 *)
  • PARI
    T(n, k) = fromdigits(digits(n, k), 10);
    tabl(nn) = for (n=2, nn, for (b=2, n, print1(T(n, b), ", "))); \\ Michel Marcus, Aug 30 2019

A037387 Numbers k such that every base-4 digit of k is a base-5 digit of k.

Original entry on oeis.org

1, 2, 3, 5, 10, 15, 21, 28, 37, 38, 42, 58, 63, 76, 80, 86, 132, 136, 137, 138, 142, 152, 160, 167, 178, 183, 190, 191, 202, 204, 205, 210, 213, 214, 215, 217, 220, 221, 222, 223, 238, 240, 256, 257, 258, 261, 266, 276, 277, 278
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List ((\\), nub)
    a037387 n = a037387_list !! (n-1)
    a037387_list = filter f [1..] where
       f x = null $ nub (ds 4 x) \\ nub (ds 5 x)
       ds b x = if x > 0 then d : ds b x' else []  where (x', d) = divMod x b
    -- Reinhard Zumkeller, May 30 2013
  • Mathematica
    Select[Range[300],SubsetQ[IntegerDigits[#,5],IntegerDigits[#,4]]&] (* Harvey P. Dale, Mar 27 2019 *)
Previous Showing 31-40 of 321 results. Next