cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 61 results. Next

A069914 a(n) = Sum_{d|n} (d-1)*sigma(n/d).

Original entry on oeis.org

0, 1, 2, 6, 4, 15, 6, 23, 16, 27, 10, 64, 12, 39, 42, 72, 16, 98, 18, 110, 60, 63, 22, 213, 48, 75, 84, 156, 28, 245, 30, 201, 96, 99, 102, 380, 36, 111, 114, 357, 40, 345, 42, 248, 248, 135, 46, 618, 96, 278, 150, 294, 52, 478, 162, 501, 168, 171, 58, 924, 60, 183
Offset: 1

Views

Author

Vladeta Jovovic, May 04 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Plus @@ (DivisorSigma[1, ds = Divisors[n]]*(n/ds - 1)), {n, 62}] (* Ivan Neretin, May 17 2015 *)
  • PARI
    a(n) = sumdiv(n, d, (d-1)*sigma(n/d)) \\ Michel Marcus, Jun 17 2013

Formula

a(n) = A060640(n) - A007429(n).
G.f.: Sum_{k>=1} sigma(k) * x^(2*k) / (1 - x^k)^2. - Ilya Gutkovskiy, Aug 19 2021

A076663 a(n) = sum of sigma(e) where e ranges over all non-divisors of n that are between 1 and n.

Original entry on oeis.org

0, 0, 3, 4, 14, 13, 32, 30, 51, 59, 86, 72, 126, 129, 154, 163, 219, 205, 276, 262, 326, 355, 406, 361, 484, 504, 546, 561, 659, 622, 761, 737, 840, 883, 944, 900, 1097, 1112, 1177, 1160, 1341, 1300, 1479, 1465, 1560, 1658, 1757, 1645, 1921, 1928, 2057, 2085
Offset: 1

Views

Author

Joseph L. Pe, Oct 24 2002

Keywords

Crossrefs

Programs

  • Maple
    N:= 1000: # for a(1) .. a(N)
    S:= [seq(numtheory:-sigma(n),n=1..N)]:
    SS:= ListTools:-PartialSums(S):
    seq(SS[n] - add(S[d], d = numtheory:-divisors(n)), n=1..N); # Robert Israel, Oct 27 2024
  • Mathematica
    f[n_] := Module[{s, i}, s = 0; For[i = 1, i < n, i++, If[Mod[n, i] != 0, s = s + DivisorSigma[1, i]]]; s]; Table[f[i], {i, 1, 100}]

Formula

a(n) = A024916(n) - A007429(n). - Robert Israel, Oct 27 2024

A143313 Triangle read by rows, A130540 * A000012, 1<=k<=n.

Original entry on oeis.org

1, 4, 1, 5, 1, 1, 11, 4, 1, 1, 7, 1, 1, 1, 1, 20, 8, 4, 1, 1, 19, 1, 1, 1, 1, 1, 1, 26, 11, 4, 4, 1, 1, 1, 1, 18, 5, 5, 1, 1, 1, 1, 1, 1, 28, 10, 4, 4, 4, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 55, 27, 15, 8, 4, 4, 1, 1, 1, 1, 1, 1, 15, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Aug 06 2008

Keywords

Comments

Left border = A007429: (1, 4, 5, 11, 7, 20, 9,...).
Row sums = A060640: (1, 5, 7, 17, 11, 35,...).

Examples

			First few rows of the triangle =
1;
4, 1;
5, 1, 1;
11, 4, 1, 1;
7, 1, 1, 1, 1;
20, 8, 4, 1, 1, 1;
9, 1, 1, 1, 1, 1, 1;
...
Row 4 = (11, 4, 1, 1) since row 4 of A130540 = (7, 3, 0, 1).
		

Crossrefs

Formula

Triangle read by rows, A130540 * A000012, 1<=k<=n. Equals partial row sums of A130540 starting from the right.

A206029 a(n) = sum of numbers k <= sigma(n) such that k is not equal to sigma(d) for any divisor d of n where sigma = A000203.

Original entry on oeis.org

0, 2, 5, 17, 14, 58, 27, 94, 73, 143, 65, 351, 90, 264, 265, 439, 152, 708, 189, 826, 483, 614, 275, 1700, 458, 843, 762, 1497, 434, 2488, 495, 1896, 1111, 1409, 1113, 3988, 702, 1746, 1521, 3913, 860, 4476, 945, 3427, 2955, 2528, 1127, 7465, 1587, 4219
Offset: 1

Views

Author

Jaroslav Krizek, Feb 03 2012

Keywords

Comments

In sequence A007429 are added all values of sigma(d) of all divisors d of numbers n, in sequence A206028 are added only distinct values of sigma(d) of all divisors d of numbers n and in sequence a(n) are added numbers k (1<=k<=sigma(n)) such that sigma(d) = k has no solution for neither divisor d of number n.

Examples

			For n=6 -> divisors d of 6: 1,2,3,6; corresponding values of sigma(d): 1,3,4,12; a(6) = Sum of k = 2+5+6+7+8+9+10+11 = 58.
		

Crossrefs

Programs

  • Mathematica
    Table[Total[Complement[Range[DivisorSigma[1, n]], DivisorSigma[1, Divisors[n]]]], {n, 100}] (* T. D. Noe, Feb 10 2012 *)

Formula

a(n) = A184387(n) - A206028 = A000217(A000203(n)) - A206028.

A326826 a(n) = (1/2) * Sum_{d|n} (sigma_1(d) + sigma_2(d)), where sigma_1 = A000203 and sigma_2 = A001157.

Original entry on oeis.org

1, 5, 8, 19, 17, 43, 30, 69, 60, 95, 68, 176, 93, 171, 166, 255, 155, 342, 192, 403, 303, 395, 278, 681, 358, 543, 490, 738, 437, 961, 498, 969, 709, 911, 720, 1476, 705, 1131, 978, 1603, 863, 1773, 948, 1732, 1440, 1643, 1130, 2634, 1284, 2110, 1648, 2391, 1433, 2882, 1706
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 20 2019

Keywords

Comments

Inverse Moebius transform applied twice to triangular numbers (A000217).

Crossrefs

Programs

  • Magma
    [(1/2)*&+[DivisorSigma(1,d)+DivisorSigma(2,d):d in Divisors(n)]:n in [1..55]]; // Marius A. Burtea, Oct 20 2019
  • Maple
    with(numtheory):
    a:= n-> add(d*(d+1)*tau(n/d), d=divisors(n))/2:
    seq(a(n), n=1..60);  # Alois P. Heinz, Oct 20 2019
  • Mathematica
    Table[1/2 Sum[DivisorSigma[1, d] + DivisorSigma[2, d], {d, Divisors[n]}], {n, 1, 55}]
    Table[1/2 Sum[d (d + 1) DivisorSigma[0, n/d], {d, Divisors[n]}], {n, 1, 55}]
    nmax = 55; CoefficientList[Series[Sum[Sum[x^(i j)/(1 - x^(i j))^3, {j, 1, nmax}], {i, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, sigma(d)+sigma(d, 2))/2; \\ Michel Marcus, Oct 20 2019
    

Formula

G.f.: Sum_{i>=1} Sum_{j>=1} x^(i*j) / (1 - x^(i*j))^3.
G.f.: (1/2) * Sum_{i>=1} Sum_{j>=1} j * (j + 1) * x^(i*j) / (1 - x^(i*j)).
G.f.: (1/2) * Sum_{k>=1} (sigma_1(k) + sigma_2(k)) * x^k / (1 - x^k).
Dirichlet g.f.: zeta(s)^2 * (zeta(s-1) + zeta(s-2)) / 2.
a(n) = (1/2) * Sum_{d|n} d * (d + 1) * tau(n/d), where tau = A000005.
a(n) = Sum_{d|n} A007437(d).
Sum_{k=1..n} a(k) ~ zeta(3)^2 * n^3 / 6. - Vaclav Kotesovec, Dec 11 2021

A327242 Expansion of Sum_{k>=1} tau(k) * x^k / (1 + x^k)^2, where tau = A000005.

Original entry on oeis.org

1, 0, 5, -5, 7, 0, 9, -18, 18, 0, 13, -25, 15, 0, 35, -47, 19, 0, 21, -35, 45, 0, 25, -90, 38, 0, 58, -45, 31, 0, 33, -108, 65, 0, 63, -90, 39, 0, 75, -126, 43, 0, 45, -65, 126, 0, 49, -235, 66, 0, 95, -75, 55, 0, 91, -162, 105, 0, 61, -175, 63, 0, 162, -233, 105
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 14 2019

Keywords

Comments

Inverse Moebius transform of A002129.
Dirichlet convolution of A000005 with A181983.

Crossrefs

Cf. A000005, A002129, A007429, A008586 (positions of negative terms), A016825 (positions of 0's), A181983, A288417, A288571.

Programs

  • Magma
    [&+[(-1)^(d+1)*d*#Divisors(n div d):d in Divisors(n)]:n in [1..65]]; // Marius A. Burtea, Sep 14 2019
  • Mathematica
    nmax = 65; CoefficientList[Series[Sum[DivisorSigma[0, k] x^k/(1 + x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    a[n_] := Sum[(-1)^(d + 1) d DivisorSigma[0, n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 65}]
    f[p_, e_] := (p^(e + 2) - (e + 2)*p + e + 1)/(p-1)^2; f[2, e_] := 3*e + 5 - 2^(e+2); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]  (* Amiram Eldar, May 25 2025 *)
  • PARI
    a(n) = {sumdiv(n, d, (-1)^(d + 1) * d * numdiv(n/d))} \\ Andrew Howroyd, Sep 14 2019
    

Formula

a(n) = Sum_{d|n} A002129(d).
a(n) = Sum_{d|n} (-1)^(d + 1) * d * tau(n/d).
Multiplicative with a(2^e) = 3*e + 5 - 2^(e+2), and a(p^e) = (p^(e+2) - (e+2)*p +e + 1)/(p-1)^2 for an odd prime p. - Amiram Eldar, May 25 2025

A344787 a(n) = n * Sum_{d|n} sigma_d(d) / d, where sigma_k(n) is the sum of the k-th powers of the divisors of n.

Original entry on oeis.org

1, 7, 31, 287, 3131, 47527, 823551, 16843583, 387440266, 10009772937, 285311670623, 8918294639219, 302875106592267, 11112685050294387, 437893920912795941, 18447025553014982271, 827240261886336764195, 39346558271492953948522, 1978419655660313589123999
Offset: 1

Views

Author

Wesley Ivan Hurt, May 28 2021

Keywords

Comments

If p is prime, a(p) = p * Sum_{d|p} sigma_d(d) / d = p * (1 + (1^p + p^p)/p) = 1 + p + p^p.

Examples

			a(4) = 4 * Sum_{d|4} sigma_d(d) / d = 4 * ((1^1)/1 + (1^2 + 2^2)/2 + (1^4 + 2^4 + 4^4)/4) = 287.
		

Crossrefs

Programs

  • Mathematica
    Table[n*Sum[DivisorSigma[k, k] (1 - Ceiling[n/k] + Floor[n/k])/k, {k, n}], {n, 20}]
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k, k)*x^k/(1-x^k)^2)) \\ Seiichi Manyama, Dec 16 2022

Formula

G.f.: Sum_{k>=1} sigma_k(k) * x^k/(1 - x^k)^2. - Seiichi Manyama, Dec 16 2022

A066365 f-perfect numbers, where f(m) = sigma(m)-m.

Original entry on oeis.org

1, 1134, 1476, 1530, 16600, 282555
Offset: 1

Views

Author

Joseph L. Pe, Dec 21 2001

Keywords

Comments

f-perfect numbers for an arithmetical function f is defined in A066218.
Also, numbers m such that 3*sigma(m)-2*m = A007429(m). - Max Alekseyev, Jul 30 2025

Crossrefs

Programs

  • Mathematica
    f[x_] := Abs[DivisorSigma[1, x] - x]; Select[ Range[2, 10^6], 2 * f[ # ] == Apply[ Plus, Map[ f, Divisors[ # ] ] ] & ]

Extensions

Edited and a(1)=1 inserted by Max Alekseyev, Jul 30 2025

A069913 a(n) = Sum_{d|n} (d-1)*tau(n/d).

Original entry on oeis.org

0, 1, 2, 5, 4, 11, 6, 16, 12, 19, 10, 37, 12, 27, 26, 42, 16, 54, 18, 59, 36, 43, 22, 100, 32, 51, 48, 81, 28, 113, 30, 99, 56, 67, 54, 162, 36, 75, 66, 152, 40, 153, 42, 125, 108, 91, 46, 240, 60, 134, 86, 147, 52, 202, 82, 204, 96, 115, 58, 331, 60, 123, 144, 219, 96
Offset: 1

Views

Author

Vladeta Jovovic, May 04 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n,(#-1)DivisorSigma[0,n/#]&],{n,100}] (* Giorgos Kalogeropoulos, Aug 19 2021 *)
  • PARI
    a(n) = sumdiv(n, d, (d-1)*numdiv(n/d)) \\ Michel Marcus, Jun 17 2013

Formula

a(n) = A007429(n) - A007425(n).
G.f.: Sum_{k>=1} tau(k) * x^(2*k) / (1 - x^k)^2. - Ilya Gutkovskiy, Aug 19 2021

A127570 Triangle T(n,k) = sigma(k) if k|n, otherwise T(n,k)=0; 1 <= k <= n.

Original entry on oeis.org

1, 1, 3, 1, 0, 4, 1, 3, 0, 7, 1, 0, 0, 0, 6, 1, 3, 4, 0, 0, 12, 1, 0, 0, 0, 0, 0, 8, 1, 3, 0, 7, 0, 0, 0, 15, 1, 0, 4, 0, 0, 0, 0, 0, 13, 1, 3, 0, 0, 6, 0, 0, 0, 0, 18, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 1, 3, 4, 7, 0, 12, 0, 0, 0, 0, 0, 28, 1
Offset: 1

Views

Author

Gary W. Adamson, Jan 19 2007

Keywords

Examples

			First few rows of the triangle are:
  1;
  1, 3;
  1, 0, 4;
  1, 3, 0, 7;
  1, 0, 0, 0, 6;
  1, 3, 4, 0, 0, 12;
  ...
		

Crossrefs

Cf. A000203 (sigma, diagonal n=k), A007429 (row sums), A051731.

Formula

T(n,k) = Sum_{j=k..n} A051731(n,j)*A130208(j,k) = A051731(n,k)*A000203(k).
Previous Showing 51-60 of 61 results. Next