cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 134 results. Next

A286718 Triangle read by rows: T(n, k) is the Sheffer triangle ((1 - 3*x)^(-1/3), (-1/3)*log(1 - 3*x)). A generalized Stirling1 triangle.

Original entry on oeis.org

1, 1, 1, 4, 5, 1, 28, 39, 12, 1, 280, 418, 159, 22, 1, 3640, 5714, 2485, 445, 35, 1, 58240, 95064, 45474, 9605, 1005, 51, 1, 1106560, 1864456, 959070, 227969, 28700, 1974, 70, 1, 24344320, 42124592, 22963996, 5974388, 859369, 72128, 3514, 92, 1, 608608000, 1077459120, 616224492, 172323696, 27458613, 2662569, 159978, 5814, 117, 1, 17041024000, 30777463360, 18331744896, 5441287980, 941164860, 102010545, 7141953, 322770, 9090, 145, 1
Offset: 0

Views

Author

Wolfdieter Lang, May 18 2017

Keywords

Comments

This is a generalization of the unsigned Stirling1 triangle A132393.
In general the lower triangular Sheffer matrix ((1 - d*x)^(-a/d), (-1/d)*log(1 - d*x)) is called here |S1hat[d,a]|. The signed matrix S1hat[d,a] with elements (-1)^(n-k)*|S1hat[d,a]|(n, k) is the inverse of the generalized Stirling2 Sheffer matrix S2hat[d,a] with elements S2[d,a](n, k)/d^k, where S2[d,a] is Sheffer (exp(a*x), exp(d*x) - 1).
In the Bala link the signed S1hat[d,a] (with row scaled elements S1[d,a](n,k)/d^n where S1[d,a] is the inverse matrix of S2[d,a]) is denoted by s_{(d,0,a)}, and there the notion exponential Riordan array is used for Sheffer array.
In the Luschny link the elements of |S1hat[m,m-1]| are called Stirling-Frobenius cycle numbers SF-C with parameter m.
From Wolfdieter Lang, Aug 09 2017: (Start)
The general row polynomials R(d,a;n,x) = Sum_{k=0..n} T(d,a;n,k)*x^k of the Sheffer triangle |S1hat[d,a]| satisfy, as special polynomials of the Boas-Buck class (see the reference), the identity (we use the notation of Rainville, Theorem 50, p. 141, adapted to an exponential generating function)
(E_x - n*1)*R(d,a;n,x) = -n!*Sum_{k=0..n-1} d^k*(a*1 + d*beta(k)*E_x)*R(d,a;n-1-k,x)/(n-1-k)!, for n >= 0, with E_x = x*d/dx (Euler operator), and beta(k) = A002208(k+1)/A002209(k+1).
This entails a recurrence for the sequence of column k, for n > k >= 0: T(d,a;n,k) = (n!/(n - k))*Sum_{p=k..n-1} d^(n-1-p)*(a + d*k*beta(n-1-p))*T(d,a;p,k)/p!, with input T(d,a;k,k) = 1. For the present [d,a] = [3,1] case see the formula and example sections below. (End)
The inverse of the Sheffer triangular matrix S2[3,1] = A282629 is the Sheffer matrix S1[3,1] = (1/(1 + x)^(1/3), log(1 + x)/3) with rational elements S1[3,1](n, k) = (-1)^(n-m)*T(n, k)/3^n. - Wolfdieter Lang, Nov 15 2018

Examples

			The triangle T(n, k) begins:
n\k        0        1        2       3      4     5    6  7 8 ...
O:         1
1:         1        1
2:         4        5        1
3:        28       39       12       1
4:       280      418      159      22      1
5:      3640     5714     2485     445     35     1
6:     58240    95064    45474    9605   1005    51    1
7:   1106560  1864456   959070  227969  28700  1974   70  1
8:  24344320 42124592 22963996 5974388 859369 72128 3514 92 1
...
From _Wolfdieter Lang_, Aug 09 2017: (Start)
Recurrence: T(3, 1) = T(2, 0) + (3*3-2)*T(2, 1) = 4 + 7*5 = 39.
Boas-Buck recurrence for column k = 2 and n = 5:
T(5, 2) = (5!/3)*(3^2*(1 + 6*(3/8))*T(2,2)/2! + 3*(1 + 6*(5/12)*T(3, 2)/3! + (1 + 6*(1/2))* T(4, 2)/4!)) = (5!/3)*(9*(1 + 9/4)/2 + 3*(1 + 15/6)*12/6 + (1 + 3)*159/24) = 2485.
The beta sequence begins: {1/2, 5/12, 3/8, 251/720, 95/288, 19087/60480, ...}.
(End)
		

References

  • Ralph P. Boas, jr. and R. Creighton Buck, Polynomial Expansions of analytic functions, Springer, 1958, pp. 17 - 21, (last sign in eq. (6.11) should be -).
  • Earl D. Rainville, Special Functions, The Macmillan Company, New York, 1960, ch. 8, sect. 76, 140 - 146.

Crossrefs

S2[d,a] for [d,a] = [1,0], [2,1], [3,1], [3,2], [4,1] and [4,3] is A048993, A154537, A282629, A225466, A285061 and A225467, respectively.
S2hat[d,a] for these [d,a] values is A048993, A039755, A111577 (offset 0), A225468, A111578 (offset 0) and A225469, respectively.
|S1hat[d,a]| for [d,a] = [1,0], [2,1], [3,2], [4,1] and [4,3] is A132393, A028338, A225470, A290317 and A225471, respectively.
Column sequences for k = 0..4: A007559, A024216(n-1), A286721(n-2), A382984, A382985.
Diagonal sequences: A000012, A000326(n+1), A024212(n+1), A024213(n+1).
Row sums: A008544. Alternating row sums: A000007.
Beta sequence: A002208(n+1)/A002209(n+1).

Programs

  • Mathematica
    T[n_ /; n >= 1, k_] /; 0 <= k <= n := T[n, k] = T[n-1, k-1] + (3*n-2)* T[n-1, k]; T[, -1] = 0; T[0, 0] = 1; T[n, k_] /; nJean-François Alcover, Jun 20 2018 *)

Formula

Recurrence: T(n, k) = T(n-1, k-1) + (3*n-2)*T(n-1, k), for n >= 1, k = 0..n, and T(n, -1) = 0, T(0, 0) = 1 and T(n, k) = 0 for n < k.
E.g.f. of row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k (i.e., e.g.f. of the triangle) is (1 - 3*z)^{-(x+1)/3}.
E.g.f. of column k is (1 - 3*x)^(-1/3)*((-1/3)*log(1 - 3*x))^k/k!.
Recurrence for row polynomials is R(n, x) = (x+1)*R(n-1, x+3), with R(0, x) = 1.
Row polynomial R(n, x) = risefac(3,1;x,n) with the rising factorial
risefac(d,a;x,n) := Product_{j=0..n-1} (x + (a + j*d)). (For the signed case see the Bala link, eq. (16)).
T(n, k) = sigma^{(n)}{n-k}(a_0,a_1,...,a{n-1}) with the elementary symmetric functions with indeterminates a_j = 1 + 3*j.
T(n, k) = Sum_{j=0..n-k} binomial(n-j, k)*|S1|(n, n-j)*3^j, with the unsigned Stirling1 triangle |S1| = A132393.
Boas-Buck column recurrence (see a comment above): T(n, k) =
(n!/(n - k))*Sum_{p=k..n-1} 3^(n-1-p)*(1 + 3*k*beta(n-1-p))*T(p, k)/p!, for n > k >= 0, with input T(k, k) = 1, with beta(k) = A002208(k+1)/A002209(k+1). See an example below. - Wolfdieter Lang, Aug 09 2017

A034689 a(n) = n-th sextic factorial number divided by 2.

Original entry on oeis.org

1, 8, 112, 2240, 58240, 1863680, 70819840, 3116072960, 155803648000, 8725004288000, 540950265856000, 36784618078208000, 2722061737787392000, 217764939022991360000, 18727784755977256960000, 1722956197549907640320000, 168849707359890948751360000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select 1 else (6*n-4)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 21 2022
    
  • Mathematica
    Table[6^n*Pochhammer[1/3, n]/2, {n, 40}] (* G. C. Greubel, Oct 21 2022 *)
  • SageMath
    [6^n*rising_factorial(1/3,n)/2 for n in range(1,40)] # G. C. Greubel, Oct 21 2022

Formula

2*a(n) = (6*n-4)(!^6) = Product_{j=1..n} (6*j-4) = 2^n*A007559(n), A007559(n) = (3*n-2)(!^3) = Product_{j=1..n} (3*j-2).
E.g.f.: (-1 + (1-6*x)^(-1/3))/2.
D-finite with recurrence: a(n) = 2*(3*n-2)*a(n-1). - R. J. Mathar, Feb 24 2020
a(n) = 3*6^(n-1)*Pochhammer(n, 1/3). - G. C. Greubel, Oct 21 2022
From Amiram Eldar, Dec 18 2022: (Start)
a(n) = A047657(n)/2.
Sum_{n>=1} 1/a(n) = 2*(e/6^4)^(1/6)*(Gamma(1/3, 1/6) - Gamma(1/3)). (End)

A035022 One eighth of 9-factorial numbers.

Original entry on oeis.org

1, 17, 442, 15470, 680680, 36076040, 2236714480, 158806728080, 12704538246400, 1130703903929600, 110808982585100800, 11856561136605785600, 1375361091846271129600, 171920136480783891200000, 23037298288425041420800000, 3294333655244780923174400000, 500738715597206700322508800000
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n le 1 select 1 else (9*n-1)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 19 2022
    
  • Maple
    f := gfun:-rectoproc({(9*n - 1)*a(n - 1) - a(n) = 0, a(1) = 1}, a(n), remember);
    map(f, [$ (1 .. 20)]); # Georg Fischer, Feb 15 2020
  • Mathematica
    Table[9^n*Pochhammer[8/9, n]/8, {n, 40}] (* G. C. Greubel, Oct 19 2022 *)
  • SageMath
    [9^n*rising_factorial(8/9,n)/8 for n in range(1,40)] # G. C. Greubel, Oct 19 2022

Formula

8*a(n) = (9*n-1)(!^9) := Product_{j=1..n} (9*j - 1).
a(n) = (9*n)!/(n!*2^4*3^(4*n)*5*7*A045756(n)*A035012(n)*A007559(n)*A035017(n) *A035018(n)*A034000(n) *A035021(n)).
E.g.f.: (-1+(1-9*x)^(-8/9))/8.
D-finite with recurrence: a(1) = 1, a(n) = (9*n - 1)*a(n-1) for n > 1. - Georg Fischer, Feb 15 2020
a(n) = (1/8) * 9^n * Pochhammer(n, 8/9). - G. C. Greubel, Oct 19 2022
From Amiram Eldar, Dec 21 2022: (Start)
a(n) = A049211(n)/8.
Sum_{n>=1} 1/a(n) = 8*(e/9)^(1/9)*(Gamma(8/9) - Gamma(8/9, 1/9)). (End)

A035023 One ninth of 9-factorial numbers.

Original entry on oeis.org

1, 18, 486, 17496, 787320, 42515280, 2678462640, 192849310080, 15620794116480, 1405871470483200, 139181275577836800, 15031577762406374400, 1758694598201545804800, 221595519373394771404800, 29915395115408294139648000, 4307816896618794356109312000
Offset: 1

Views

Author

Keywords

Comments

E.g.f. is g.f. for A001019(n-1) (powers of nine).

Crossrefs

Programs

  • Magma
    [9^(n-1)*Factorial(n): n in [1..40]]; // G. C. Greubel, Oct 19 2022
    
  • Mathematica
    With[{nn=20},Rest[CoefficientList[Series[(-1+1/(1-9*x))/9,{x,0,nn}],x] Range[ 0,nn]!]] (* Harvey P. Dale, Apr 07 2019 *)
    Table[9^(n-1)*n!, {n, 40}] (* G. C. Greubel, Oct 19 2022 *)
  • SageMath
    [9^(n-1)*factorial(n) for n in range(1,40)] # G. C. Greubel, Oct 19 2022

Formula

9*a(n) = (9*n)(!^9) = Product_{j=1..n} 9*j = 9^n*n!.
E.g.f.: (-1+1/(1-9*x))/9.
D-finite with recurrence: a(n) - 9*n*a(n-1) = 0. - R. J. Mathar, Jan 28 2020
From Amiram Eldar, Jan 08 2022: (Start)
Sum_{n>=1} 1/a(n) = 9*(exp(1/9)-1).
Sum_{n>=1} (-1)^(n+1)/a(n) = 9*(1-exp(-1/9)). (End)
a(n) = A001019(n-1) * A000142(n). - G. C. Greubel, Oct 19 2022

A051141 Triangle read by rows: a(n, m) = S1(n, m)*3^(n-m), where S1 are the signed Stirling numbers of first kind A008275 (n >= 1, 1 <= m <= n).

Original entry on oeis.org

1, -3, 1, 18, -9, 1, -162, 99, -18, 1, 1944, -1350, 315, -30, 1, -29160, 22194, -6075, 765, -45, 1, 524880, -428652, 131544, -19845, 1575, -63, 1, -11022480, 9526572, -3191076, 548289, -52920, 2898, -84, 1, 264539520, -239660208
Offset: 1

Views

Author

Keywords

Comments

Previous name was: Generalized Stirling number triangle of first kind.
a(n,m) = R_n^m(a=0,b=3) in the notation of the given reference.
a(n,m) is a Jabotinsky matrix, i.e., the monic row polynomials E(n,x) := Sum_{m=1..n} a(n,m)*x^m = Product_{j=0..n-1} (x - 3*j), n >= 1 and E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
This is the signed Stirling1 triangle with diagonals d>=0 (main diagonal d=0) scaled with 3^d.
Exponential Riordan array [1/(1 + 3*x), log(1 + 3*x)/3]. The unsigned triangle is [1/(1 - 3*x), log(1/(1 - 3*x)^(1/3))]. - Paul Barry, Apr 29 2009
Also the Bell transform of the triple factorial numbers A032031 which adds a first column (1, 0, 0 ...) on the left side of the triangle and computes the unsigned values. For the definition of the Bell transform, see A264428. See A004747 for the triple factorial numbers A008544 and A203412 for the triple factorial numbers A007559 as well as A039683 and A132062 for the case of double factorial numbers. - Peter Luschny, Dec 21 2015

Examples

			Triangle starts:
       1;
      -3,       1;
      18,      -9,      1;
    -162,      99,    -18,      1;
    1944,   -1350,    315,    -30,    1;
  -29160,   22194,  -6075,    765,  -45,   1;
  524880, -428652, 131544, -19845, 1575, -63, 1;
---
Row polynomial E(3,x) = 18*x-9*x^2+x^3.
From _Paul Barry_, Apr 29 2009: (Start)
The unsigned array [1/(1 - 3*x), log(1/(1 - 3*x)^(1/3))] has production matrix
    3,    1;
    9,    6,    1;
   27,   27,    9,   1;
   81,  108,   54,  12,   1;
  243,  405,  270,  90,  15,  1;
  729, 1458, 1215, 540, 135, 18, 1;
  ...
which is A007318^{3} beheaded (by viewing A007318 as a lower triangular matrix). See the comment above. (End)
		

Crossrefs

First (m=1) column sequence is: A032031(n-1).
Row sums (signed triangle): A008544(n-1)*(-1)^(n-1).
Row sums (unsigned triangle): A007559(n).
Cf. A008275 (Stirling1 triangle, b=1), A039683 (b=2), A051142 (b=4).

Programs

Formula

a(n, m) = a(n-1, m-1) - 3*(n-1)*a(n-1, m) for n >= m >= 1; a(n, m) = 0 for n < m; a(n, 0) = 0 for n >= 1; a(0, 0) = 1.
E.g.f. for the m-th column of the signed triangle: (log(1 + 3*x)/3)^m/m!.
|a(n,1)| = A032031(n-1). - Peter Luschny, Dec 23 2015

Extensions

Name clarified using a formula of the author by Peter Luschny, Dec 23 2015

A111146 Triangle T(n,k), read by rows, given by [0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] DELTA [1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 1, 4, 0, 0, 2, 5, 8, 0, 0, 6, 15, 17, 16, 0, 0, 24, 62, 68, 49, 32, 0, 0, 120, 322, 359, 243, 129, 64, 0, 0, 720, 2004, 2308, 1553, 756, 321, 128, 0, 0, 5040, 14508, 17332, 11903, 5622, 2151, 769, 256, 0, 0, 40320, 119664
Offset: 0

Views

Author

Philippe Deléham, Oct 19 2005

Keywords

Comments

Let R(m,n,k), 0<=k<=n, the Riordan array (1, x*g(x)) where g(x) is g.f. of the m-fold factorials . Then Sum_{k, 0<=k<=n} = R(m,n,k) = Sum_{k, 0<=k<=n} T(n,k)*m^(n-k).
For m = -1, R(-1,n,k) is A026729(n,k).
For m = 0, R(0,n,k) is A097805(n,k).
For m = 1, R(1,n,k) is A084938(n,k).
For m = 2, R(2,n,k) is A111106(n,k).

Examples

			Triangle begins:
.1;
.0, 1;
.0, 0, 2;
.0, 0, 1, 4;
.0, 0, 2, 5, 8;
.0, 0, 6, 15, 17, 16;
.0, 0, 24, 62, 68, 49, 32;
.0, 0, 120, 322, 359, 243, 129, 64;
.0, 0, 720, 2004, 2308, 1553, 756, 321, 128;
.0, 0, 5040, 14508, 17332, 11903, 5622, 2151, 769, 256;
.0, 0, 40320, 119664, 148232, 105048, 49840, 18066, 5756, 1793, 512;
....................................................................
At y=2: Sum_{k=0..n} 2^k*T(n,k) = A113327(n) where (1 + 2*x + 8*x^2 + 36*x^3 +...+ A113327(n)*x^n +..) = 1/(1 - 2/1!*x*(1! + 2!*x + 3!*x^2 + 4!*x^3 +..) ).
At y=3: Sum_{k=0..n} 3^k*T(n,k) = A113328(n) where (1 + 3*x + 18*x^2 + 117*x^3 +...+ A113328(n)*x^n +..) = 1/(1 - 3/2!*x*(2! + 3!*x + 4!*x^2 + 5!*x^3 +..) ).
At y=4: Sum_{k=0..n} 4^k*T(n,k) = A113329(n) where (1 + 4*x + 32*x^2 + 272*x^3 +...+ A113329(n)*x^n +..) = 1/(1 - 4/3!*x*(3! + 4!*x + 5!*x^2 + 6!*x^3 +..) ).
		

Crossrefs

Cf. m-fold factorials : A000142, A001147, A007559, A007696, A008548, A008542.
Cf. A113326, A113327 (y=2), A113328 (y=3), A113329 (y=4), A113330 (y=5), A113331 (y=6).

Programs

  • Mathematica
    T[n_, k_] := Module[{x = X + X*O[X]^n, y = Y + Y*O[Y]^k}, A = 1/(1 - x*y*Sum[x^j*Product[y + i, {i, 0, j - 1}], {j, 0, n}]); Coefficient[ Coefficient[A, X, n], Y, k]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 26 2019, from PARI *)
  • PARI
    {T(n,k)=local(x=X+X*O(X^n),y=Y+Y*O(Y^k)); A=1/(1-x*y*sum(j=0,n,x^j*prod(i=0,j-1,y+i))); return(polcoeff(polcoeff(A,n,X),k,Y))} (Hanna)

Formula

Sum_{k, 0<=k<=n} (-1)^(n-k)*T(n, k) = A000045(n+1), Fibonacci numbers.
Sum_{k, 0<=k<=n} T(n, k) = A051295(n).
Sum_{k, 0<=k<=n} 2^(n-k)*T(n, k) = A112934(n).
T(0, 0) = 1, T(n, n) = 2^(n-1).
G.f.: A(x, y) = 1/(1 - x*y*Sum_{j>=0} (y-1+j)!/(y-1)!*x^j ). - Paul D. Hanna, Oct 26 2005

A114799 Septuple factorial, 7-factorial, n!7, n!!!!!!!, a(n) = n*a(n-7) if n > 1, else 1.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 7, 8, 18, 30, 44, 60, 78, 98, 120, 288, 510, 792, 1140, 1560, 2058, 2640, 6624, 12240, 19800, 29640, 42120, 57624, 76560, 198720, 379440, 633600, 978120, 1432080, 2016840, 2756160, 7352640, 14418720, 24710400, 39124800
Offset: 0

Views

Author

Jonathan Vos Post, Feb 18 2006

Keywords

Comments

Many of the terms yield multifactorial primes a(n) + 1, e.g.: a(2) + 1 = 3, a(4) + 1 = 5, a(6) + 1 = 7, a(9) + 1 = 19, a(10) + 1 = 31, a(12) + 1 = 61, a(13) + 1 = 79, a(24) + 1 = 12241, a(25) + 1 = 19801, a(26) + 1 = 29641, a(29) + 1 = 76561, a(31) + 1 = 379441, a(35) + 1 = 2016841, a(36) + 1 = 2756161, ...
Equivalently, product of all positive integers <= n congruent to n (mod 7). - M. F. Hasler, Feb 23 2018

Examples

			a(40) = 40 * a(40-7) = 40 * a(33) = 40 * (33*a(26)) = 40 * 33 * (26*a(19)) = 40 * 33 * 26 * (19*a(12)) = 40 * 33 * 26 * 19 * (12*a(5)) = 40 * 33 * 26 * 19 * 12 5 = 39124800.
		

Crossrefs

Programs

  • GAP
    a:= function(n)
        if n<1 then return 1;
        else return n*a(n-7);
        fi;
      end;
    List([0..40], n-> a(n) ); # G. C. Greubel, Aug 20 2019
  • Magma
    b:= func< n | (n lt 8) select n else n*Self(n-7) >;
    [1] cat [b(n): n in [1..40]]; // G. C. Greubel, Aug 20 2019
    
  • Maple
    A114799 := proc(n)
        option remember;
        if n < 1 then
            1;
        else
            n*procname(n-7) ;
        end if;
    end proc:
    seq(A114799(n),n=0..40) ; # R. J. Mathar, Jun 23 2014
    A114799 := n -> product(n-7*k,k=0..(n-1)/7); # M. F. Hasler, Feb 23 2018
  • Mathematica
    a[n_]:= If[n<1, 1, n*a[n-7]]; Table[a[n], {n,0,40}] (* G. C. Greubel, Aug 20 2019 *)
  • PARI
    A114799(n,k=7)=prod(j=0,(n-1)\k,n-j*k) \\ M. F. Hasler, Feb 23 2018
    
  • Sage
    def a(n):
        if (n<1): return 1
        else: return n*a(n-7)
    [a(n) for n in (0..40)] # G. C. Greubel, Aug 20 2019
    

Formula

a(n) = 1 for n <= 1, else a(n) = n*a(n-7).
Sum_{n>=0} 1/a(n) = A288094. - Amiram Eldar, Nov 10 2020

Extensions

Edited by M. F. Hasler, Feb 23 2018

A257610 Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 3*x + 2.

Original entry on oeis.org

1, 2, 2, 4, 20, 4, 8, 132, 132, 8, 16, 748, 2112, 748, 16, 32, 3964, 25124, 25124, 3964, 32, 64, 20364, 256488, 552728, 256488, 20364, 64, 128, 103100, 2398092, 9670840, 9670840, 2398092, 103100, 128, 256, 518444, 21246736, 147146804, 270783520, 147146804, 21246736, 518444, 256
Offset: 0

Views

Author

Dale Gerdemann, May 03 2015

Keywords

Examples

			Triangle begins as:
    1;
    2,      2;
    4,     20,        4;
    8,    132,      132,         8;
   16,    748,     2112,       748,        16;
   32,   3964,    25124,     25124,      3964,        32;
   64,  20364,   256488,    552728,    256488,     20364,       64;
  128, 103100,  2398092,   9670840,   9670840,   2398092,   103100,    128;
  256, 518444, 21246736, 147146804, 270783520, 147146804, 21246736, 518444, 256;
		

Crossrefs

See similar sequences listed in A256890.

Programs

  • Mathematica
    T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
    Table[T[n,k,3,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 20 2022 *)
  • Sage
    def T(n,k,a,b): # A257610
        if (k<0 or k>n): return 0
        elif (n==0): return 1
        else: return  (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
    flatten([[T(n,k,3,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 20 2022

Formula

T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 3*x + 2.
Sum_{k=0..n} T(n, k) = A007559(n).
T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 3, and b = 2. - G. C. Greubel, Mar 20 2022

A346982 Expansion of e.g.f. 1 / (4 - 3 * exp(x))^(1/3).

Original entry on oeis.org

1, 1, 5, 41, 477, 7201, 133685, 2945881, 75145677, 2177900241, 70687244965, 2539879312521, 100086803174077, 4291845333310081, 198954892070938645, 9914294755149067961, 528504758009562261677, 30010032597449931644721, 1808359960001658961070725
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 09 2021

Keywords

Comments

Stirling transform of A007559.

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n<2, 1, (3*n-2)*g(n-1)) end:
    b:= proc(n, m) option remember;
         `if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..18);  # Alois P. Heinz, Aug 09 2021
  • Mathematica
    nmax = 18; CoefficientList[Series[1/(4 - 3 Exp[x])^(1/3), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[StirlingS2[n, k] 3^k Pochhammer[1/3, k], {k, 0, n}], {n, 0, 18}]

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k) * A007559(k).
a(n) ~ n! / (Gamma(1/3) * 2^(2/3) * n^(2/3) * log(4/3)^(n + 1/3)). - Vaclav Kotesovec, Aug 14 2021
From Peter Bala, Aug 22 2023: (Start)
O.g.f. (conjectural): 1/(1 - x/(1 - 4*x/(1 - 4*x/(1 - 8*x/(1 - 7*x/(1 - 12*x/(1 - ... - (3*n-2)*x/(1 - 4*n*x/(1 - ... ))))))))) - a continued fraction of Stieltjes-type (S-fraction).
More generally, it appears that the o.g.f. of the sequence whose e.g.f. is equal to 1/(r+1 - r*exp(s*x))^(m/s) corresponds to the S-fraction 1/(1 - r*m*x/(1 - s*(r+1)*x/(1 - r*(m+s)*x/(1 - 2*s(r+1)*x/(1 - r*(m+2*s)*x/(1 - 3*s(r+1)*x/( 1 - ... ))))))). This is the case r = 3, s = 1, m = 1/3. (End)
a(0) = 1; a(n) = Sum_{k=1..n} (3 - 2*k/n) * binomial(n,k) * a(n-k). - Seiichi Manyama, Sep 09 2023
a(0) = 1; a(n) = a(n-1) - 4*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 16 2023

A035013 One third of 9-factorial numbers.

Original entry on oeis.org

1, 12, 252, 7560, 294840, 14152320, 806682240, 53241027840, 3993077088000, 335418475392000, 31193918211456000, 3181779657568512000, 353177541990104832000, 42381305038812579840000, 5467188350006822799360000, 754471992300941546311680000, 110907382868238407307816960000, 17301551727445191540019445760000
Offset: 1

Views

Author

Keywords

Comments

E.g.f. is g.f. for A034171(n-1).

Crossrefs

Programs

  • Magma
    [n le 1 select 1 else (9*n-6)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 18 2022
    
  • Mathematica
    s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 11, 2*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
    Table[9^n*Pochhammer[1/3, n]/3, {n, 40}] (* G. C. Greubel, Oct 18 2022 *)
  • SageMath
    [9^n*rising_factorial(1/3,n)/3 for n in range(1,40)] # G. C. Greubel, Oct 18 2022

Formula

3*a(n) = (9*n-6)(!^9) := Product_{j=1..n} (9*j-6) = 3^n*A007559(n).
E.g.f.: (-1+(1-9*x)^(-1/3))/3.
From G. C. Greubel, Oct 18 2022: (Start)
a(n) = (1/3) * 9^n * Pochhammer(n, 1/3).
a(n) = (9*n-6)*a(n-1). (End)
From Amiram Eldar, Dec 21 2022: (Start)
a(n) = A144758(n)/3.
Sum_{n>=1} 1/a(n) = 3*(e/9^6)^(1/9)*(Gamma(1/3) - Gamma(1/3, 1/9)). (End)

Extensions

Terms a(15) onward added by G. C. Greubel, Oct 18 2022
Previous Showing 31-40 of 134 results. Next