A286718
Triangle read by rows: T(n, k) is the Sheffer triangle ((1 - 3*x)^(-1/3), (-1/3)*log(1 - 3*x)). A generalized Stirling1 triangle.
Original entry on oeis.org
1, 1, 1, 4, 5, 1, 28, 39, 12, 1, 280, 418, 159, 22, 1, 3640, 5714, 2485, 445, 35, 1, 58240, 95064, 45474, 9605, 1005, 51, 1, 1106560, 1864456, 959070, 227969, 28700, 1974, 70, 1, 24344320, 42124592, 22963996, 5974388, 859369, 72128, 3514, 92, 1, 608608000, 1077459120, 616224492, 172323696, 27458613, 2662569, 159978, 5814, 117, 1, 17041024000, 30777463360, 18331744896, 5441287980, 941164860, 102010545, 7141953, 322770, 9090, 145, 1
Offset: 0
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 ...
O: 1
1: 1 1
2: 4 5 1
3: 28 39 12 1
4: 280 418 159 22 1
5: 3640 5714 2485 445 35 1
6: 58240 95064 45474 9605 1005 51 1
7: 1106560 1864456 959070 227969 28700 1974 70 1
8: 24344320 42124592 22963996 5974388 859369 72128 3514 92 1
...
From _Wolfdieter Lang_, Aug 09 2017: (Start)
Recurrence: T(3, 1) = T(2, 0) + (3*3-2)*T(2, 1) = 4 + 7*5 = 39.
Boas-Buck recurrence for column k = 2 and n = 5:
T(5, 2) = (5!/3)*(3^2*(1 + 6*(3/8))*T(2,2)/2! + 3*(1 + 6*(5/12)*T(3, 2)/3! + (1 + 6*(1/2))* T(4, 2)/4!)) = (5!/3)*(9*(1 + 9/4)/2 + 3*(1 + 15/6)*12/6 + (1 + 3)*159/24) = 2485.
The beta sequence begins: {1/2, 5/12, 3/8, 251/720, 95/288, 19087/60480, ...}.
(End)
- Ralph P. Boas, jr. and R. Creighton Buck, Polynomial Expansions of analytic functions, Springer, 1958, pp. 17 - 21, (last sign in eq. (6.11) should be -).
- Earl D. Rainville, Special Functions, The Macmillan Company, New York, 1960, ch. 8, sect. 76, 140 - 146.
- P. Bala, A 3 parameter family of generalized Stirling numbers
- Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli Numbers, arXiv:math/1707.04451 [math.NT], July 2017.
- Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
- Peter Luschny, The Stirling-Frobenius numbers.
S2[d,a] for [d,a] = [1,0], [2,1], [3,1], [3,2], [4,1] and [4,3] is
A048993,
A154537,
A282629,
A225466,
A285061 and
A225467, respectively.
|S1hat[d,a]| for [d,a] = [1,0], [2,1], [3,2], [4,1] and [4,3] is
A132393,
A028338,
A225470,
A290317 and
A225471, respectively.
-
T[n_ /; n >= 1, k_] /; 0 <= k <= n := T[n, k] = T[n-1, k-1] + (3*n-2)* T[n-1, k]; T[, -1] = 0; T[0, 0] = 1; T[n, k_] /; nJean-François Alcover, Jun 20 2018 *)
A034689
a(n) = n-th sextic factorial number divided by 2.
Original entry on oeis.org
1, 8, 112, 2240, 58240, 1863680, 70819840, 3116072960, 155803648000, 8725004288000, 540950265856000, 36784618078208000, 2722061737787392000, 217764939022991360000, 18727784755977256960000, 1722956197549907640320000, 168849707359890948751360000
Offset: 1
-
[n le 1 select 1 else (6*n-4)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 21 2022
-
Table[6^n*Pochhammer[1/3, n]/2, {n, 40}] (* G. C. Greubel, Oct 21 2022 *)
-
[6^n*rising_factorial(1/3,n)/2 for n in range(1,40)] # G. C. Greubel, Oct 21 2022
A035022
One eighth of 9-factorial numbers.
Original entry on oeis.org
1, 17, 442, 15470, 680680, 36076040, 2236714480, 158806728080, 12704538246400, 1130703903929600, 110808982585100800, 11856561136605785600, 1375361091846271129600, 171920136480783891200000, 23037298288425041420800000, 3294333655244780923174400000, 500738715597206700322508800000
Offset: 1
-
[n le 1 select 1 else (9*n-1)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 19 2022
-
f := gfun:-rectoproc({(9*n - 1)*a(n - 1) - a(n) = 0, a(1) = 1}, a(n), remember);
map(f, [$ (1 .. 20)]); # Georg Fischer, Feb 15 2020
-
Table[9^n*Pochhammer[8/9, n]/8, {n, 40}] (* G. C. Greubel, Oct 19 2022 *)
-
[9^n*rising_factorial(8/9,n)/8 for n in range(1,40)] # G. C. Greubel, Oct 19 2022
A035023
One ninth of 9-factorial numbers.
Original entry on oeis.org
1, 18, 486, 17496, 787320, 42515280, 2678462640, 192849310080, 15620794116480, 1405871470483200, 139181275577836800, 15031577762406374400, 1758694598201545804800, 221595519373394771404800, 29915395115408294139648000, 4307816896618794356109312000
Offset: 1
-
[9^(n-1)*Factorial(n): n in [1..40]]; // G. C. Greubel, Oct 19 2022
-
With[{nn=20},Rest[CoefficientList[Series[(-1+1/(1-9*x))/9,{x,0,nn}],x] Range[ 0,nn]!]] (* Harvey P. Dale, Apr 07 2019 *)
Table[9^(n-1)*n!, {n, 40}] (* G. C. Greubel, Oct 19 2022 *)
-
[9^(n-1)*factorial(n) for n in range(1,40)] # G. C. Greubel, Oct 19 2022
A051141
Triangle read by rows: a(n, m) = S1(n, m)*3^(n-m), where S1 are the signed Stirling numbers of first kind A008275 (n >= 1, 1 <= m <= n).
Original entry on oeis.org
1, -3, 1, 18, -9, 1, -162, 99, -18, 1, 1944, -1350, 315, -30, 1, -29160, 22194, -6075, 765, -45, 1, 524880, -428652, 131544, -19845, 1575, -63, 1, -11022480, 9526572, -3191076, 548289, -52920, 2898, -84, 1, 264539520, -239660208
Offset: 1
Triangle starts:
1;
-3, 1;
18, -9, 1;
-162, 99, -18, 1;
1944, -1350, 315, -30, 1;
-29160, 22194, -6075, 765, -45, 1;
524880, -428652, 131544, -19845, 1575, -63, 1;
---
Row polynomial E(3,x) = 18*x-9*x^2+x^3.
From _Paul Barry_, Apr 29 2009: (Start)
The unsigned array [1/(1 - 3*x), log(1/(1 - 3*x)^(1/3))] has production matrix
3, 1;
9, 6, 1;
27, 27, 9, 1;
81, 108, 54, 12, 1;
243, 405, 270, 90, 15, 1;
729, 1458, 1215, 540, 135, 18, 1;
...
which is A007318^{3} beheaded (by viewing A007318 as a lower triangular matrix). See the comment above. (End)
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Richell O. Celeste, Roberto B. Corcino, and Ken Joffaniel M. Gonzales, Two Approaches to Normal Order Coefficients, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
- Wolfdieter Lang, First 10 rows.
- D. S. Mitrinovic and M. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 77 (1962), 1-77.
First (m=1) column sequence is:
A032031(n-1).
Row sums (signed triangle):
A008544(n-1)*(-1)^(n-1).
Row sums (unsigned triangle):
A007559(n).
-
a[n_, m_] /; n >= m >= 1 := a[n, m] = a[n-1, m-1] - 3(n-1)*a[n-1, m]; a[n_, m_] /; n < m = 0; a[, 0] = 0; a[1, 1] = 1; Flatten[Table[a[n, m], {n, 1, 9}, {m, 1, n}]][[1 ;; 38]] (* _Jean-François Alcover, Jun 01 2011, after formula *)
Table[StirlingS1[n, m]*3^(n - m), {n, 1, 10}, {m, 1, n}]//Flatten (* G. C. Greubel, Oct 24 2017 *)
-
for(n=1,10, for(m=1,n, print1(stirling(n,m,1)*3^(n-m), ", "))) \\ G. C. Greubel, Oct 24 2017
-
# uses[bell_transform from A264428]
triplefactorial = lambda n: 3^n*factorial(n)
def A051141_row(n):
trifact = [triplefactorial(k) for k in (0..n)]
return bell_transform(n, trifact)
[A051141_row(n) for n in (0..8)] # Peter Luschny, Dec 21 2015
Name clarified using a formula of the author by
Peter Luschny, Dec 23 2015
A111146
Triangle T(n,k), read by rows, given by [0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] DELTA [1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 0, 2, 0, 0, 1, 4, 0, 0, 2, 5, 8, 0, 0, 6, 15, 17, 16, 0, 0, 24, 62, 68, 49, 32, 0, 0, 120, 322, 359, 243, 129, 64, 0, 0, 720, 2004, 2308, 1553, 756, 321, 128, 0, 0, 5040, 14508, 17332, 11903, 5622, 2151, 769, 256, 0, 0, 40320, 119664
Offset: 0
Triangle begins:
.1;
.0, 1;
.0, 0, 2;
.0, 0, 1, 4;
.0, 0, 2, 5, 8;
.0, 0, 6, 15, 17, 16;
.0, 0, 24, 62, 68, 49, 32;
.0, 0, 120, 322, 359, 243, 129, 64;
.0, 0, 720, 2004, 2308, 1553, 756, 321, 128;
.0, 0, 5040, 14508, 17332, 11903, 5622, 2151, 769, 256;
.0, 0, 40320, 119664, 148232, 105048, 49840, 18066, 5756, 1793, 512;
....................................................................
At y=2: Sum_{k=0..n} 2^k*T(n,k) = A113327(n) where (1 + 2*x + 8*x^2 + 36*x^3 +...+ A113327(n)*x^n +..) = 1/(1 - 2/1!*x*(1! + 2!*x + 3!*x^2 + 4!*x^3 +..) ).
At y=3: Sum_{k=0..n} 3^k*T(n,k) = A113328(n) where (1 + 3*x + 18*x^2 + 117*x^3 +...+ A113328(n)*x^n +..) = 1/(1 - 3/2!*x*(2! + 3!*x + 4!*x^2 + 5!*x^3 +..) ).
At y=4: Sum_{k=0..n} 4^k*T(n,k) = A113329(n) where (1 + 4*x + 32*x^2 + 272*x^3 +...+ A113329(n)*x^n +..) = 1/(1 - 4/3!*x*(3! + 4!*x + 5!*x^2 + 6!*x^3 +..) ).
-
T[n_, k_] := Module[{x = X + X*O[X]^n, y = Y + Y*O[Y]^k}, A = 1/(1 - x*y*Sum[x^j*Product[y + i, {i, 0, j - 1}], {j, 0, n}]); Coefficient[ Coefficient[A, X, n], Y, k]];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 26 2019, from PARI *)
-
{T(n,k)=local(x=X+X*O(X^n),y=Y+Y*O(Y^k)); A=1/(1-x*y*sum(j=0,n,x^j*prod(i=0,j-1,y+i))); return(polcoeff(polcoeff(A,n,X),k,Y))} (Hanna)
A114799
Septuple factorial, 7-factorial, n!7, n!!!!!!!, a(n) = n*a(n-7) if n > 1, else 1.
Original entry on oeis.org
1, 1, 2, 3, 4, 5, 6, 7, 8, 18, 30, 44, 60, 78, 98, 120, 288, 510, 792, 1140, 1560, 2058, 2640, 6624, 12240, 19800, 29640, 42120, 57624, 76560, 198720, 379440, 633600, 978120, 1432080, 2016840, 2756160, 7352640, 14418720, 24710400, 39124800
Offset: 0
a(40) = 40 * a(40-7) = 40 * a(33) = 40 * (33*a(26)) = 40 * 33 * (26*a(19)) = 40 * 33 * 26 * (19*a(12)) = 40 * 33 * 26 * 19 * (12*a(5)) = 40 * 33 * 26 * 19 * 12 5 = 39124800.
Cf. k-fold factorials:
A000142,
A001147 (and
A000165,
A006882),
A007559 (and
A032031,
A008544,
A007661),
A007696 (and
A001813,
A008545,
A047053,
A007662),
A008548 (and
A052562,
A047055,
A085157),
A085158 (and
A008542,
A047058,
A047657),
A045755.
-
a:= function(n)
if n<1 then return 1;
else return n*a(n-7);
fi;
end;
List([0..40], n-> a(n) ); # G. C. Greubel, Aug 20 2019
-
b:= func< n | (n lt 8) select n else n*Self(n-7) >;
[1] cat [b(n): n in [1..40]]; // G. C. Greubel, Aug 20 2019
-
A114799 := proc(n)
option remember;
if n < 1 then
1;
else
n*procname(n-7) ;
end if;
end proc:
seq(A114799(n),n=0..40) ; # R. J. Mathar, Jun 23 2014
A114799 := n -> product(n-7*k,k=0..(n-1)/7); # M. F. Hasler, Feb 23 2018
-
a[n_]:= If[n<1, 1, n*a[n-7]]; Table[a[n], {n,0,40}] (* G. C. Greubel, Aug 20 2019 *)
-
A114799(n,k=7)=prod(j=0,(n-1)\k,n-j*k) \\ M. F. Hasler, Feb 23 2018
-
def a(n):
if (n<1): return 1
else: return n*a(n-7)
[a(n) for n in (0..40)] # G. C. Greubel, Aug 20 2019
A257610
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 3*x + 2.
Original entry on oeis.org
1, 2, 2, 4, 20, 4, 8, 132, 132, 8, 16, 748, 2112, 748, 16, 32, 3964, 25124, 25124, 3964, 32, 64, 20364, 256488, 552728, 256488, 20364, 64, 128, 103100, 2398092, 9670840, 9670840, 2398092, 103100, 128, 256, 518444, 21246736, 147146804, 270783520, 147146804, 21246736, 518444, 256
Offset: 0
Triangle begins as:
1;
2, 2;
4, 20, 4;
8, 132, 132, 8;
16, 748, 2112, 748, 16;
32, 3964, 25124, 25124, 3964, 32;
64, 20364, 256488, 552728, 256488, 20364, 64;
128, 103100, 2398092, 9670840, 9670840, 2398092, 103100, 128;
256, 518444, 21246736, 147146804, 270783520, 147146804, 21246736, 518444, 256;
See similar sequences listed in
A256890.
-
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n,k,3,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Mar 20 2022 *)
-
def T(n,k,a,b): # A257610
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (a*k+b)*T(n-1,k,a,b) + (a*(n-k)+b)*T(n-1,k-1,a,b)
flatten([[T(n,k,3,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 20 2022
A346982
Expansion of e.g.f. 1 / (4 - 3 * exp(x))^(1/3).
Original entry on oeis.org
1, 1, 5, 41, 477, 7201, 133685, 2945881, 75145677, 2177900241, 70687244965, 2539879312521, 100086803174077, 4291845333310081, 198954892070938645, 9914294755149067961, 528504758009562261677, 30010032597449931644721, 1808359960001658961070725
Offset: 0
-
g:= proc(n) option remember; `if`(n<2, 1, (3*n-2)*g(n-1)) end:
b:= proc(n, m) option remember;
`if`(n=0, g(m), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..18); # Alois P. Heinz, Aug 09 2021
-
nmax = 18; CoefficientList[Series[1/(4 - 3 Exp[x])^(1/3), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS2[n, k] 3^k Pochhammer[1/3, k], {k, 0, n}], {n, 0, 18}]
A035013
One third of 9-factorial numbers.
Original entry on oeis.org
1, 12, 252, 7560, 294840, 14152320, 806682240, 53241027840, 3993077088000, 335418475392000, 31193918211456000, 3181779657568512000, 353177541990104832000, 42381305038812579840000, 5467188350006822799360000, 754471992300941546311680000, 110907382868238407307816960000, 17301551727445191540019445760000
Offset: 1
-
[n le 1 select 1 else (9*n-6)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 18 2022
-
s=1;lst={s};Do[s+=n*s;AppendTo[lst, s], {n, 11, 2*5!, 9}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
Table[9^n*Pochhammer[1/3, n]/3, {n, 40}] (* G. C. Greubel, Oct 18 2022 *)
-
[9^n*rising_factorial(1/3,n)/3 for n in range(1,40)] # G. C. Greubel, Oct 18 2022
Comments