cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 102 results. Next

A340441 Square array, read by ascending antidiagonals, where row n gives all odd solutions k > 1 and n > 0 to A000120(2*n+1) = A000120((2*n+1)*k), A000120 is the Hamming weight.

Original entry on oeis.org

3, 13, 11, 3, 205, 43, 57, 5, 3277, 171, 35, 3641, 7, 52429, 683, 21, 47, 233017, 19, 838861, 2731, 3, 79, 99, 14913081, 23, 13421773, 10923, 241, 5, 197, 187, 954437177, 37, 214748365, 43691, 7, 61681, 7, 325, 419, 61083979321, 39, 3435973837, 174763
Offset: 1

Views

Author

Thomas Scheuerle, Jan 07 2021

Keywords

Comments

Solutions to related equation A000120(k) = A000120(k*n) are A340351.

Examples

			Five initial terms of rows 1-5 are listed below:
   1:  3,   11,     43,       171,       683, ...
   2: 13,  205,   3277,     52429,    838861, ...
   3:  3,    5,      7,        19,        23, ...
   4: 57, 3641, 233017,  14913081, 954437177, ...
   5: 35,   47,      99,      187,       419, ...
T(3,4) = 19 because: (3*2+1) in binary is 111 and (3*2+1)*19 = 133 in binary is 10000101, both have 3 bits set to 1.
		

Crossrefs

Cf. A263132 (superset of 1st row), A007583 (1st row), A299960 (2nd row).

Formula

If 2*n = 2^j, then T(n, m) = (1+2^(j+2*j*m))/(2*n+1) for m > 0. In particular:
T(1, m) = (1+2^(1+2*m))/3 = A007583(m),
T(2, m) = (1+2^(2+4*m))/5 = A299960(m),
T(4, m) = (1+2^(3+6*m))/9.
The third row consists of all numbers of the form (1+2^(1+b*3)+2^(2+c*3))/7, where b and c are natural numbers >= 0 and b+c > 0.
The seventh row consists of all numbers of the form (1+2^(1+b*2)+2^(2+c*2)+2^(3+d*2))/15 where b, c, and d are natural numbers >= 0 and b+c+d > 1.

Extensions

More terms from Pontus von Brömssen, Jan 08 2021

A362903 Array read by antidiagonals: T(n,k) is the number of nonisomorphic k-tuples of involutions on a (2n)-set that pairwise commute.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 11, 4, 1, 1, 16, 43, 24, 5, 1, 1, 32, 171, 176, 46, 6, 1, 1, 64, 683, 1376, 611, 80, 7, 1, 1, 128, 2731, 10944, 9281, 1864, 130, 8, 1, 1, 256, 10923, 87424, 146445, 54384, 5161, 200, 9, 1, 1, 512, 43691, 699136, 2334181, 1696352, 285939, 13184, 295, 10, 1
Offset: 0

Views

Author

Andrew Howroyd, May 11 2023

Keywords

Comments

Two involutions x,y commute if x*y = y*x. Isomorphism is up to permutation of the elements of the (2n)-set. T(n,k) also gives the values for a (2n+1)-set.

Examples

			Array begins:
======================================================
n/k| 0 1   2     3       4          5            6 ...
---+--------------------------------------------------
0  | 1 1   1     1       1          1            1 ...
1  | 1 2   4     8      16         32           64 ...
2  | 1 3  11    43     171        683         2731 ...
3  | 1 4  24   176    1376      10944        87424 ...
4  | 1 5  46   611    9281     146445      2334181 ...
5  | 1 6  80  1864   54384    1696352     53885632 ...
6  | 1 7 130  5161  285939   17562679   1110290303 ...
7  | 1 8 200 13184 1372224  165343616  20774749952 ...
8  | 1 9 295 31532 6101080 1436647664 358238974304 ...
  ...
		

Crossrefs

Columns k=0..3 are A000012, A000027(n-1), A001752, A362904.
Rows n=1..3 are A000079, A007583, A103334(n+1).

Programs

  • PARI
    \\ B(n, k) is A022166.
    B(n, k)={polcoef(x^k/prod(j=0, k, 1-2^j*x + O(x*x^n)), n)}
    C(k,n) = Vec(1/prod(j=0, min(k-1, logint(n, 2)), (1 - x^(2^j) + O(x*x^n))^B(k,j+1), 1 - x + O(x*x^n)))
    M(n,m=n) = Mat(vector(m+1, k, C(k-1, n)~))
    { my(A=M(7)); for(i=1, #A, print(A[i,])) }

Formula

G.f. of column k: 1/((1 - x)*Product_{j=0..k-1} (1 - x^(2^j))^A022166(k,j+1)).

A364215 The number of 1's in the canonical representation of n as a sum of distinct Jacobsthal numbers (A280049).

Original entry on oeis.org

1, 2, 1, 2, 3, 2, 3, 2, 3, 4, 1, 2, 3, 2, 3, 4, 3, 4, 3, 4, 5, 2, 3, 2, 3, 4, 3, 4, 3, 4, 5, 2, 3, 4, 3, 4, 5, 4, 5, 4, 5, 6, 1, 2, 3, 2, 3, 4, 3, 4, 3, 4, 5, 2, 3, 4, 3, 4, 5, 4, 5, 4, 5, 6, 3, 4, 3, 4, 5, 4, 5, 4, 5, 6, 3, 4, 5, 4, 5, 6, 5, 6, 5, 6, 7, 2, 3
Offset: 1

Views

Author

Amiram Eldar, Jul 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    DigitCount[Select[Range[200], EvenQ[IntegerExponent[#, 2]] &], 2, 1]
  • PARI
    s(n) = if(n < 2, n > 0, n = s(n-1); until(valuation(n, 2)%2 == 0, n++); n); \\ A003159
    a(n) = hammingweight(s(n));

Formula

a(n) = A007953(A280049(n)).
a(n) = A000120(A003159(n)).
a(A007583(n)) = 1.

A046636 Number of cubic residues mod 8^n.

Original entry on oeis.org

1, 5, 37, 293, 2341, 18725, 149797, 1198373, 9586981, 76695845, 613566757, 4908534053, 39268272421, 314146179365, 2513169434917, 20105355479333, 160842843834661, 1286742750677285, 10293942005418277, 82351536043346213, 658812288346769701, 5270498306774157605, 42163986454193260837
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = (4*8^n + 3)/7.
a(n) = 8*a(n-1) - 3 (with a(0)=1). - Vincenzo Librandi, Nov 18 2010
From R. J. Mathar, Feb 28 2011: (Start)
a(n) = A046530(8^n) = A046630(3*n).
G.f.: (1-4*x)/((1-8*x)*(1-x)). (End)
a(n+1) = A226308(3*n+2). - Philippe Deléham, Feb 24 2014
From Elmo R. Oliveira, Apr 03 2025: (Start)
E.g.f.: exp(x)*(4*exp(7*x) + 3)/7.
a(n) = 9*a(n-1) - 8*a(n-2).
a(n) = A047853(n+1)/2. (End)

Extensions

More terms from Elmo R. Oliveira, Apr 03 2025

A059054 Integers which can be written as (b^k+1)/(b+1) for positive integers b and k.

Original entry on oeis.org

1, 3, 7, 11, 13, 21, 31, 43, 57, 61, 73, 91, 111, 133, 157, 171, 183, 205, 211, 241, 273, 307, 343, 381, 421, 463, 507, 521, 547, 553, 601, 651, 683, 703, 757, 813, 871, 931, 993, 1057, 1111, 1123, 1191, 1261, 1333, 1407, 1483, 1561, 1641, 1723, 1807, 1893
Offset: 1

Views

Author

Henry Bottomley, Dec 21 2000

Keywords

Comments

It seems that all values are odd. For (b^k+1)/(b+1) to be an integer, it seems k must be odd. 2=(0^0+1)/(0+1) has been excluded since neither b nor k would be positive.
When k is a composite, a(n) is a composite.
These numbers are in the form of 111...1 (k of 1s) base b. - Lei Zhou, Feb 08 2012

Examples

			43 is in the sequence since (2^7+1)/(2+1)=129/3=43; indeed also (7^3+1)/(7+1)=344/8=43.
		

Crossrefs

Programs

  • Mathematica
    max = 44; maxdata = (1 + max^3)/(1 + max); a = {}; Do[i = 1; While[i = i + 2; cc = (1 + m^i)/(1 + m); cc <= maxdata, a = Append[a, cc]], {m, 2, max}]; Union[a] (* Lei Zhou, Feb 08 2012 *)

A081547 Smallest composite number which is 1 more than the product of n (not necessarily distinct) prime numbers.

Original entry on oeis.org

4, 10, 9, 25, 33, 65, 129, 385, 513, 1025, 2049, 4097, 8193, 16385, 32769, 98305, 131073, 262145, 524289, 1048577, 2097153, 4194305, 8388609, 16777217, 33554433, 67108865, 134217729, 268435457, 536870913, 1073741825, 2147483649
Offset: 1

Views

Author

Amarnath Murthy, Apr 01 2003

Keywords

Comments

a(2*n+1) = 2^(2*n+1)+1, n>0. - Vladeta Jovovic, Apr 02 2003

Crossrefs

Programs

  • Mathematica
    cno[n_]:=Module[{a=2^n+1},If[PrimeQ[a],2^(n-1)*3+1,a]]; Join[{4,10}, Array[cno,30,3]] (* Harvey P. Dale, Mar 24 2012 *)
  • Python
    from sympy import isprime
    def A081547(n): return 10 if n==2 else ((3<Chai Wah Wu, Sep 02 2024

Formula

For n>2, a(n) = 2^n+1 unless this is a Fermat prime (A019434), in which case a(n) = 2^(n-1)*3+1 (which is divisible by 5). - Dean Hickerson, Apr 05 2003

Extensions

More terms from Vladeta Jovovic, Apr 02 2003

A092468 a(n) = Sum_{i+j+k=n, 0<=i<=j<=k<=n} (n+2k)!/(i! * j! * (3*k)!).

Original entry on oeis.org

1, 1, 3, 24, 71, 366, 2142, 8128, 40063, 223182, 919600, 4477496, 24423998, 104469379, 508145588, 2726623094, 11936904927, 58101760966, 307770506832, 1369729219470, 6671075408724, 34985537652681, 157621462924548
Offset: 0

Views

Author

Benoit Cloitre, Mar 25 2004

Keywords

Crossrefs

Programs

  • PARI
    a(n)=sum(i=0,n,sum(j=0,i,sum(k=0,j,if(i+j+k-n,0,(n+2*k)!/i!/j!/(3*k)!))))

Formula

Conjecture: a(n+1)/a(n) tends to (73 + 6*sqrt(87))^(1/3)/3 + 13/(3*(73 + 6*sqrt(87))^(1/3)) + 7/3 = 4.875129794... - Vaclav Kotesovec, Oct 31 2021

A114192 Riordan array (1/(1-2x),x/(1-2x)^2).

Original entry on oeis.org

1, 2, 1, 4, 6, 1, 8, 24, 10, 1, 16, 80, 60, 14, 1, 32, 240, 280, 112, 18, 1, 64, 672, 1120, 672, 180, 22, 1, 128, 1792, 4032, 3360, 1320, 264, 26, 1, 256, 4608, 13440, 14784, 7920, 2288, 364, 30, 1, 512, 11520, 42240, 59136, 41184, 16016, 3640, 480, 34, 1
Offset: 0

Views

Author

Paul Barry, Nov 16 2005

Keywords

Comments

Factors as (1/(1-x),x/(1-x))*(1/(1-x),x*(1+x)/(1-x)^2) or A007318 times A114188. Also (1/(1-2*x),x/(1-2*x))*(1,x*(1+2*x)). Inverse is A114193. Row sums are A007583. Diagonal sums are A007051.

Examples

			Triangle begins
1;
2, 1;
4, 6, 1;
8, 24, 10, 1;
16, 80, 60, 14, 1;
32, 240, 280, 112, 18, 1;
		

Formula

T(n,k) = sum{j=0..n, C(k, j)*C(n, k+j)}*2^(n-k).
T(n,k) = 2^(n-k)*binomial(n+k,2k) = 2^(n-k)*A085478(n,k). - Philippe Deléham, May 05 2006
T(n,k) = A013609(n+k, n-k). - Johannes W. Meijer, Sep 05 2013
T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - 4*T(n-2,k), T(0,0) = T(1,1) = 1, T(1,0) = 2, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Jan 17 2014

A234038 Smallest positive integer solution x of 9*x - 2^n*y = 1.

Original entry on oeis.org

1, 1, 1, 1, 9, 25, 57, 57, 57, 57, 569, 1593, 3641, 3641, 3641, 3641, 36409, 101945, 233017, 233017, 233017, 233017, 2330169, 6524473, 14913081, 14913081, 14913081, 14913081, 149130809, 417566265, 954437177, 954437177, 954437177
Offset: 0

Views

Author

Wolfdieter Lang, Feb 17 2014

Keywords

Comments

The solution of the linear Diophantine equation 9*x - 2^n*y = 1 with smallest positive x is x=a(n), n>= 0, and the corresponding y is given by y(n) = 5^(n+3) (mod 9) = A070366(n+3) with o.g.f. (8-4*x-2*x^2+7*x^3)/((1-x+x^2)*(1-x)*(1+x)) (derived from the one given in A070366). This is the periodic sequence with period [8, 4, 2, 1, 5, 7].

Examples

			n = 0:  9*1 - 1*8 = 1; n = 3:  9*1 - 8*1  = 1.
a(4) = (1 + 2^4*5)/9 = 9.
		

Crossrefs

Cf. A070366, A007583 (see the Feb 15 2013 comment).

Programs

  • Mathematica
    A234038[n_] := Ceiling[(1 + 2^n*Mod[5^(n - 3), 9])/9]; Array[A234038, 50, 0] (* or *)
    LinearRecurrence[{3, -2, -8, 24, -16}, {1, 1, 1, 1, 9}, 50] (* Paolo Xausa, Nov 05 2024 *)

Formula

a(n) = (1 + 2^n*(5^(n-3)(mod 9)))/3^2, n >= 3.
O.g.f.: (1-2*x+8*x^3-8*x^4)/((1-x)*(1-4*x^2)*(1-2*x+4*x^2)) (derived from the one for y(n) given above in a comment).
a(n) = 2*(a(n-1) - 4*a(n-3) + 8*a(n-4)) - 1, n >= 4, a(0)=a(1)=a(2)=a(3) = 1 (from the y(n) recurrence given in A070366).

A239125 Smallest positive integer solution x of (3^3)*x - 2^n*y = 1 for n >= 0.

Original entry on oeis.org

1, 1, 3, 3, 3, 19, 19, 19, 19, 19, 531, 531, 2579, 6675, 6675, 23059, 55827, 121363, 252435, 252435, 776723, 776723, 776723, 4971027, 4971027, 4971027, 4971027, 4971027, 139188755, 139188755, 676059667, 1749801491, 1749801491, 6044768787, 14634703379
Offset: 0

Views

Author

Wolfdieter Lang, Mar 13 2014

Keywords

Comments

a(n) is the smallest positive integer solution of the linear Diophantine equation 27*a(n) - 2^n*b(n) = 1, n >= 0, with b(n) the period length 18 = phi(27) sequence repeat(26, 13, 20, 10, 5, 16, 8, 4, 2, 1, 14, 7, 17, 22, 11, 19, 23, 25). Here phi(n) = A000010(n) (Euler's totient). These 18 members are a permutation of the smallest nonnegative numbers of the reduced residue system modulo 27.
This is the instance m = 3 of an m-family of sequence pairs [x0(m, n), y0(m, n)], n >= 0, providing a special solution of the linear Diophantine equation 3^m*x - 2^n*y = 1; in fact the one with smallest positive x. The general formula is y0(m, n) = ((3^m+1)/2)^(n+3^(m-1)) (mod 3^m) and x0(m, n) = (1 + 2^n*y0(m, n))/3^m. For m = 0 this is x0(0, n) = 1 + 2^n with y0(0, n) = 1, n >= 0. Obviously, y0(m, n) is a positive integer (y0 = 0 is out). The proof that x0(m, n) is also a positive integer is done by showing that 1 + 2*y0(m, n) == 0 (mod 3^m). Because (3^m+1)/2 == 1/2 (mod 3^m) one shows that ((3^m+1)/2)^(3^(m-1)) + 1 == 0 (mod 3^m). This can be done writing (3^m+1)/2 = 3*q - 1, with q = (3^(m-1) + 1)/2, a natural number for m >= 1. Then the binomial theorem is used. Finally one has to show that binomial(3^(m-1) - 1, n -1)/n is a (positive) integer. Here the triangle A107711 helps (for a nice proof that A107711 is a positive integer triangle see the history with the remark by Peter Bala from Fri Feb 28, after #13).
The general family of positive solutions of 3^m*x - 2^n*y = c (c an integer) is then x(m, n; k) = x0(m, n) + 2^n*tmin(m, n) + 2^n*k and y(m, n; k) = y0(m, n) + 3^m*tmin(m, n) + 3^m*k for k>=0, with tmin(m, n) = ceiling(-c*y0(m, n)/3^m) if c>=0 and tmin(m, n) = ceiling(|c|*x0(m, n)/2^n) if c < 0.
See the Niven-Zuckerman-Montgomery reference, pp. 212-214, for integer solutions of a*x + b*y = c provided gcd(a,b)|c. Note that in their treatment of positive solutions a and b are assumed to be positive, but here we use b < 0.
For this instance m=3 one can prove directly that the a(n) formula given below in terms of b(n) produces (positive) integers. One uses 1/2 (mod 27) = 14 and 14^9 + 1 == 0 (mod 27).

Examples

			a(0) = 1 because 27*1 - 1*b(0) = 27 - 26 = 1.
a(1) = 1 because 27*1 - 2*b(1) = 27 - 2*13 = 1.
a(5) = 19, because 27*19 - 32*b(5) = 27*19 - 32*16 = 1.
		

References

  • I. Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991.

Crossrefs

Cf. A007583 (comment Feb 15 2014).

Programs

  • Mathematica
    LinearRecurrence[{3, -2, 0, 0, 0, 0, 0, 0, -512, 1536, -1024}, {1, 1, 3, 3, 3, 19, 19, 19, 19, 19, 531}, 40] (* Bruno Berselli, Mar 15 2014 *)

Formula

a(n) = (1 + 2^n*b(n))/27 with b(n) = 14^(n+9) (mod 27), n >= 0. The sequence b(n) has period length 18, and it is given in a comment above.
a(n) = 3*a(n-1) -2*a(n-2) -512*a(n-9) +1536*a(n-10) -1024*a(n-11) for n>10, with initial values as shown. - Bruno Berselli, Mar 15 2014
G.f.: -(512*x^10-512*x^9+32*x^6-16*x^5+4*x^3-2*x^2+2*x-1) / ((x-1)*(2*x-1)*(2*x+1)*(4*x^2-2*x+1)*(64*x^6-8*x^3+1)). - Colin Barker, Mar 20 2014
Previous Showing 71-80 of 102 results. Next