cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 90 results. Next

A171974 Integer part of the height of a regular tetrahedron with edge length n.

Original entry on oeis.org

0, 1, 2, 3, 4, 4, 5, 6, 7, 8, 8, 9, 10, 11, 12, 13, 13, 14, 15, 16, 17, 17, 18, 19, 20, 21, 22, 22, 23, 24, 25, 26, 26, 27, 28, 29, 30, 31, 31, 32, 33, 34, 35, 35, 36, 37, 38, 39, 40, 40, 41, 42, 43, 44, 44, 45, 46, 47, 48, 48, 49, 50, 51, 52, 53, 53, 54, 55, 56, 57, 57, 58, 59
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 20 2010

Keywords

Comments

-3 <= 4*A171975(n) - 3*a(n) < 3;
a(n)*A171975(n) <= A007590(n);
floor(a(n)*A171971(n)/3) <= A171973(n).

Crossrefs

Cf. A171972, A022840. Beatty sequence of A157697.

Programs

  • Haskell
    a171974 = floor . (/ 3) . (* sqrt 6) . fromInteger
    -- Reinhard Zumkeller, Dec 15 2012

Formula

a(n) = floor(n*sqrt(6)/3).

A277646 Triangle T(n,k) = floor(n^2/k) for 1 <= k <= n^2, read by rows.

Original entry on oeis.org

1, 4, 2, 1, 1, 9, 4, 3, 2, 1, 1, 1, 1, 1, 16, 8, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 25, 12, 8, 6, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 36, 18, 12, 9, 7, 6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 49, 24, 16, 12, 9, 8, 7, 6
Offset: 1

Views

Author

Jason Kimberley, Nov 09 2016

Keywords

Examples

			The first five rows of the triangle are:
1;
4, 2, 1, 1;
9, 4, 3, 2, 1, 1, 1, 1, 1;
16, 8, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1;
25, 12, 8, 6, 5, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
		

Crossrefs

Cf. Related triangles: A010766, A277647, A277648.
Rows of this triangle (with infinite trailing zeros):
T(1,k) = A000007(k-1),
T(2,k) = A033324(k),
T(3,k) = A033329(k),
T(4,k) = A033336(k),
T(5,k) = A033345(k),
T(6,k) = A033356(k),
T(7,k) = A033369(k),
T(8,k) = A033384(k),
T(9,k) = A033401(k),
T(10,k) = A033420(k),
T(100,k) = A033422(k),
T(10^3,k) = A033426(k),
T(10^4,k) = A033424(k).
Columns of this triangle:
T(n,1) = A000290(n),
T(n,2) = A007590(n),
T(n,3) = A000212(n),
T(n,4) = A002620(n),
T(n,5) = A118015(n),
T(n,6) = A056827(n),
T(n,7) = A056834(n),
T(n,8) = A130519(n+1),
T(n,9) = A056838(n),
T(n,10)= A056865(n),
T(n,12)= A174709(n+2).

Programs

  • Magma
    A277646:=func;
    [A277646(n,k):k in[1..n^2],n in[1..7]];
  • Mathematica
    Table[Floor[n^2/k], {n, 7}, {k, n^2}] // Flatten (* Michael De Vlieger, Nov 24 2016 *)

Formula

T(n,k) = A010766(n^2,k).

A007009 Number of 3-voter voting schemes with n linearly ranked choices.

Original entry on oeis.org

1, 4, 12, 27, 54, 96, 160, 250, 375, 540, 756, 1029, 1372, 1792, 2304, 2916, 3645, 4500, 5500, 6655, 7986, 9504, 11232, 13182, 15379, 17836, 20580, 23625, 27000, 30720, 34816, 39304, 44217, 49572, 55404, 61731, 68590, 76000, 84000, 92610, 101871, 111804
Offset: 1

Views

Author

Keywords

Comments

With a(0) = 0 nontrivial integer solutions of (x + y)^3 = (x - y)^4. If x = a(n) then y = a(n + (-1)^n). - Thomas Scheuerle, Mar 22 2023

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A034828 (first differences).

Programs

  • Magma
    I:=[1,4,12,27,54,96,160]; [n le 7 select I[n] else 3*Self(n-1)-Self(n-2)- 5*Self(n-3)+5*Self(n-4)+Self(n-5)-3*Self(n-6)+Self(n-7): n in [1..50]]; // Vincenzo Librandi, Sep 21 2015
    
  • Maple
    a:= n-> (Matrix([[0$4, 1, 4, 12, 27]]). Matrix(8, (i, j)-> `if`(i=j-1, 1, `if`(j=1, [4, -4, -4, 10, -4, -4, 4, -1][i], 0)))^n)[1, 1]:
    seq(a(n), n=1..40);  # Alois P. Heinz, Aug 13 2008
  • Mathematica
    LinearRecurrence[{3, -1, -5, 5, 1, -3, 1}, {1, 4, 12, 27, 54, 96, 160}, 50] (* Vincenzo Librandi, Sep 21 2015 *)
  • PARI
    Vec(x*(1-x^3)/((1-x)^4*(1-x^2)^2) + O(x^100)) \\ Colin Barker, Jan 07 2016

Formula

G.f.: x*(1-x^3)/((1-x)^4*(1-x^2)^2) = x*(1+x+x^2)/((1-x)^5*(1+x)^2).
a(n) = (1/2)*Sum_{k=1..n+1} k*floor(k/2)*ceiling(k/2). - Vladeta Jovovic, Apr 29 2006
a(n) = A006009(n)/4.
a(n) = A007590(n+2)*A007590(n+1)/8. - Richard R. Forberg, Dec 03 2013
For n > 1, a(n) = A000332(n+3) - A002624(n-2). - Antal Pinter, Sep 20 2015
a(n) = (n^4 + 6*n^3 + 12*n^2 + 8*n)/32 for n even; a(n) = (n^4 + 6*n^3 + 12*n^2 + 10*n + 3)/32 for n odd. - Colin Barker, Jan 07 2016

Extensions

More terms from James Sellers, Sep 08 2000

A094953 Triangle T(n,m) read by rows: number of rises (drops) in the compositions of n with m parts, m>=2.

Original entry on oeis.org

1, 1, 2, 2, 4, 3, 2, 8, 9, 4, 3, 12, 21, 16, 5, 3, 18, 39, 44, 25, 6, 4, 24, 66, 96, 80, 36, 7, 4, 32, 102, 184, 200, 132, 49, 8, 5, 40, 150, 320, 430, 372, 203, 64, 9, 5, 50, 210, 520, 830, 888, 637, 296, 81, 10, 6, 60, 285, 800, 1480, 1884, 1673, 1024, 414, 100, 11, 6
Offset: 2

Views

Author

Ralf Stephan, May 26 2004

Keywords

Examples

			1
1 2
2 4 3
2 8 9 4
3 12 21 16 5
3 18 39 44 25 6
4 24 66 96 80 36 7
		

Crossrefs

Columns 2-4 (+-offset) are A004526, A007590, A007518.
Row sums are A045883, diagonals include n, n^2, (n-1)(n^2-n+2)/2, (n-1)^2(n^+n+6), etc.
Cf. A045927.

Programs

  • Mathematica
    T[n_, m_] := SeriesCoefficient[(m-1)x^(m+1)/(1+x)/(1-x)^m, {x, 0, n+1}];
    Table[T[n, m], {n, 2, 13}, {m, 2, n}] // Flatten (* Jean-François Alcover, Dec 03 2018 *)
  • PARI
    T(n,m)=polcoeff((m-1)*x^(m+1)/(1+x)/(1-x)^m,n)

Formula

G.f. of m-th column: [(m-1)x^(m+1)]/[(1+x)(1-x)^m].

A060155 Table T(n,k) by antidiagonals of floor(n^k/k) [n,k >= 1].

Original entry on oeis.org

1, 0, 2, 0, 2, 3, 0, 2, 4, 4, 0, 4, 9, 8, 5, 0, 6, 20, 21, 12, 6, 0, 10, 48, 64, 41, 18, 7, 0, 18, 121, 204, 156, 72, 24, 8, 0, 32, 312, 682, 625, 324, 114, 32, 9, 0, 56, 820, 2340, 2604, 1555, 600, 170, 40, 10, 0, 102, 2187, 8192, 11160, 7776, 3361, 1024, 243, 50, 11
Offset: 1

Views

Author

Henry Bottomley, Mar 12 2001

Keywords

Examples

			T(5,3)=[5^3/3]=[125/3]=41.
Rows start:
  1,  0,  0,   0,   0, ...
  2,  2,  2,   4,   6, ...
  3,  4,  9,  20,  48, ...
  4,  8, 21,  64, 204, ...
  5, 12, 41, 156, 625, ...
		

Crossrefs

Columns include A000027, A007590.
Diagonals include A000169.

Formula

T(n, k) = (A051129(n, k)-A060154(n, k))/k.

A080476 Floor( geometric mean of next n numbers ).

Original entry on oeis.org

1, 2, 4, 8, 12, 18, 24, 32, 40, 50, 60, 72, 84, 98, 112, 128, 144, 162, 180, 200, 220, 242, 264, 288, 312, 338, 364, 392, 420, 450, 480, 512, 544, 578, 612, 648, 684, 722, 760, 800, 840, 882, 924, 968, 1012, 1058, 1104, 1152, 1200, 1250, 1300, 1352, 1404, 1458
Offset: 1

Views

Author

Amarnath Murthy, Mar 11 2003

Keywords

Comments

Essentially the same as A007590: a(n) = A007590(n) for n>=2.
Also, floor( harmonic mean of next n numbers ).
Also, floor(sqrt(A131479(n)+1)). - Richard R. Forberg, Aug 04 2013

Examples

			a(4) = floor( (7*8*9*10)^(1/4) ) = 8.
a(4) = floor( 1/( (1/7 + 1/8 + 1/9 + 1/10 )*(1/4)) ) = 8.
		

Crossrefs

Programs

  • PARI
    a(n)=if(n<2,n>0,n^2\2);

Formula

a(n+3) = 2*a(n+2) - a(n+1) if n even, a(n+3) = 2*a(n+2) - a(n+1) + 2 if n odd, with a(1) = 1, a(2) = 2, a(3) = 4. - Yosu Yurramendi, Sep 12 2008
From Colin Barker, Aug 08 2013: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n > 5.
G.f.: x*(x^4 - 2*x^3 - 1)/((x - 1)^3*(x + 1)). (End)
E.g.f.: (2*x + x*(x + 1)*cosh(x) + (x^2 + x - 1)*sinh(x))/2. - Stefano Spezia, Feb 18 2023

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 06 2003

A171975 Integer part of the circumsphere radius of a regular tetrahedron with edge length n.

Original entry on oeis.org

0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 12, 13, 14, 14, 15, 15, 16, 17, 17, 18, 18, 19, 20, 20, 21, 22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28, 29, 30, 30, 31, 31, 32, 33, 33, 34, 34, 35, 36, 36, 37, 37, 38, 39, 39, 40, 41, 41, 42, 42, 43, 44, 44, 45, 45
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 20 2010

Keywords

Comments

-3 <= 4*a(n) - 3*A171974(n) < 3;
a(n)*A171974(n) <= A007590(n).

Crossrefs

Cf. A171973, A171972, A022840. Beatty sequence of A187110.

Programs

  • Haskell
    a171975 = floor . (/ 4) . (* sqrt 6) . fromInteger
    -- Reinhard Zumkeller, Dec 15 2012

Formula

a(n) = floor(n*sqrt(6)/4).

A241683 Total number of 2 X 2 squares appearing in the Thue-Morse sequence logical matrices after n stages.

Original entry on oeis.org

0, 0, 0, 2, 12, 50, 220, 882, 3612, 14450, 58140, 232562, 931612, 3726450, 14911260, 59645042, 238602012, 954408050, 3817719580, 15270878322, 61083862812, 244335451250, 977343203100, 3909372812402
Offset: 0

Views

Author

Kival Ngaokrajang, Apr 27 2014

Keywords

Comments

a(n) is the total number of non-isolated "1s" (consecutive 1s on 2 rows, 2 columns) that appear as 2 X 2 squares in the Thue-Morse logical matrices after n stages. See links for more details.

Crossrefs

Cf. A010060.

Programs

  • PARI
    {a0=0;print1(a0,", "); for (n=0,50, b=ceil(2*(2^n-1)/3); a=floor(b^2/2); print1(a,", "))}

Formula

a(n) = A007590(A000975(n - 1)).
Empirical g.f.: 2*x^3*(4*x^2-2*x-1) / ((x-1)*(x+1)*(2*x-1)*(2*x+1)*(4*x-1)). - Colin Barker, Apr 27 2014
a(n) = (1/18) * (4^n - 3*2^n - 6*(-1)^n + (-2)^n - 2), n>0 (from g.f.). - Ralf Stephan, Apr 27 2014

A241684 The total number of rectangles appearing in the Thue-Morse sequence logical matrices after n stages.

Original entry on oeis.org

0, 0, 4, 8, 32, 120, 464, 1848, 7312, 29240, 116624, 466488, 1864592, 7458360, 29827984, 119311928, 477225872, 1908903480, 7635526544, 30542106168, 122168075152, 488672300600, 1954687804304, 7818751217208, 31274999276432, 125099997105720, 500399966053264, 2001599864213048
Offset: 0

Views

Author

Kival Ngaokrajang, Apr 27 2014

Keywords

Comments

a(n) is the total number of non-isolated "1s" (consecutive 1s on 2 rows, 1 column or 1 row, 2 columns) that appear as rectangles in the Thue-Morse logical matrices after n stages. See links for more details.

Crossrefs

Cf. A010060.

Programs

  • Magma
    [(8+3*2^n+2*4^n+(-1)^n*(24-2^n))/18: n in [0..30]]; // Vincenzo Librandi, Sep 29 2017
  • Mathematica
    CoefficientList[Series[-4*x^2*(8*x^3 - 5*x^2 - 2*x + 1)/((x - 1)*(x + 1)*(2*x - 1)*(2*x + 1)*(4*x - 1)), {x, 0, 50}], x] (* G. C. Greubel, Sep 28 2017 *)
  • PARI
    x='x+O('x^50); concat([0,0], Vec(-4*x^2*(8*x^3-5*x^2-2*x+1)/((x-1)*(x+1)*(2*x-1)*(2*x+1)*(4*x-1)))) \\ G. C. Greubel, Sep 28 2017
    

Formula

a(n) = A007590(A005578(n+1)) - (A139598(A000975(n-2)) + A007590(A000975(n-1))).
G.f.: -4*x^2*(8*x^3-5*x^2-2*x+1) / ((x-1)*(x+1)*(2*x-1)*(2*x+1)*(4*x-1)). - Colin Barker, Apr 27 2014
a(n) = (8 + 3*2^n + 2*4^n + (-1)^n*(24 - 2^n))/18, n>0. - R. J. Mathar, May 04 2014

Extensions

Terms a(21) onward added by G. C. Greubel, Sep 28 2017

A334892 Number T(n,k) of k-element subsets of [n] avoiding 3-term arithmetic progressions and containing n if n>0; triangle T(n,k), n>=0, 0<=k<=A003002(n), read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 0, 1, 3, 2, 0, 1, 4, 4, 1, 0, 1, 5, 8, 3, 0, 1, 6, 12, 6, 0, 1, 7, 18, 15, 0, 1, 8, 24, 26, 4, 0, 1, 9, 32, 47, 20, 0, 1, 10, 40, 67, 40, 7, 0, 1, 11, 50, 102, 80, 18, 0, 1, 12, 60, 140, 140, 53, 6, 0, 1, 13, 72, 194, 236, 110, 16, 1
Offset: 0

Views

Author

Alois P. Heinz, May 14 2020

Keywords

Comments

T(n,k) is defined for all n >= 0 and k >= 0. The triangle contains only elements with 0 <= k <= A003002(n). T(n,k) = 0 for k > A003002(n).

Examples

			  1;
  0, 1;
  0, 1,  1;
  0, 1,  2;
  0, 1,  3,  2;
  0, 1,  4,  4,   1;
  0, 1,  5,  8,   3;
  0, 1,  6, 12,   6;
  0, 1,  7, 18,  15;
  0, 1,  8, 24,  26,   4;
  0, 1,  9, 32,  47,  20;
  0, 1, 10, 40,  67,  40,   7;
  0, 1, 11, 50, 102,  80,  18;
  0, 1, 12, 60, 140, 140,  53,   6;
  0, 1, 13, 72, 194, 236, 110,  16,  1;
  0, 1, 14, 84, 248, 342, 198,  42,  3;
  0, 1, 15, 98, 326, 532, 377, 100, 10;
  ...
		

Crossrefs

Columns k=0-3 give: A000007, A057427, A000027(n-1), A007590(n-2).
Row sums give A334893.
Last elements of rows give A334894.

Programs

  • Maple
    b:= proc(n, s) option remember; `if`(n=0, x, b(n-1, s)+ `if`(
          ormap(j-> 2*j-n in s, s), 0, expand(x*b(n-1, s union {n}))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(
                `if`(n=0, 1, b(n-1, {n}))):
    seq(T(n), n=0..16);
  • Mathematica
    b[n_, s_] := b[n, s] = If[n == 0, x, b[n-1, s] + If[
         AnyTrue[s, MemberQ[s, 2#-n]&], 0, Expand[x*b[n-1, s ~Union~ {n}]]]];
    T[n_] := If[n == 0, {1}, CoefficientList[b[n-1, {n}], x]];
    T /@ Range[0, 16] // Flatten (* Jean-François Alcover, May 03 2021, after Alois P. Heinz *)

Formula

T(0,k) = A334187(0,k), T(n,k) = A334187(n,k) - A334187(n-1,k) for n > 0.
Previous Showing 41-50 of 90 results. Next