A134273
A certain partition array in Abramowitz-Stegun order (A-St order), called M_3(5).
Original entry on oeis.org
1, 5, 1, 45, 15, 1, 585, 180, 75, 30, 1, 9945, 2925, 2250, 450, 375, 50, 1, 208845, 59670, 43875, 20250, 8775, 13500, 1875, 900, 1125, 75, 1, 5221125, 1461915, 1044225, 921375, 208845, 307125, 141750, 118125, 20475, 47250, 13125, 1575, 2625, 105, 1
Offset: 1
Triangle begins:
[1];
[51];
[45,15,1];
[585,180,75,30,1];
[9945,2925,2250,450,375,50,1];
...
Cf. There are a(4, 3)=75=3*5^2 unordered 2-forest with 4 vertices, composed of two 5-ary increasing trees, each with two vertices: there are 3 increasing labelings (1, 2)(3, 4); (1, 3)(2, 4); (1, 4)(2, 3) and each tree comes in five versions from the 5-ary structure.
A134274
A certain partition array in Abramowitz-Stegun order (A-St order), called M_3(5)/M_3.
Original entry on oeis.org
1, 5, 1, 45, 5, 1, 585, 45, 25, 5, 1, 9945, 585, 225, 45, 25, 5, 1, 208845, 9945, 2925, 2025, 585, 225, 125, 45, 25, 5, 1, 5221125, 208845, 49725, 26325, 9945, 2925, 2025, 1125, 585, 225, 125, 45, 25, 5, 1, 151412625, 5221125, 1044225, 447525, 342225
Offset: 1
Triangle begins:
[1];
[5,1];
[45,5,1];
[585,45,25,5,1];
[9945,585,225,45,25,5,1];
...
A142589
Square array T(n,m) = Product_{i=0..m} (1+n*i) read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 24, 15, 4, 1, 1, 120, 105, 28, 5, 1, 1, 720, 945, 280, 45, 6, 1, 1, 5040, 10395, 3640, 585, 66, 7, 1, 1, 40320, 135135, 58240, 9945, 1056, 91, 8, 1, 1, 362880, 2027025, 1106560, 208845, 22176, 1729, 120, 9, 1, 1, 3628800, 34459425, 24344320, 5221125, 576576, 43225, 2640, 153, 10, 1
Offset: 0
The transpose of the array is:
1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 2, 3, 4, 5, 6, 7, 8, 9,
1, 6, 15, 28, 45, 66, 91, 120, 153, ... A000384
1, 24, 105, 280, 585, 1056, 1729, 2640, 3825, ... A011199
1, 120, 945, 3640, 9945, 22176, 43225, 76560, 126225,... A011245
1, 720, 10395, 58240, 208845, 576576, 1339975, 2756160,...
/ | \ \
A000142 A001147 A007559 A007696
-
function T(n,k)
if k eq 0 or n eq 0 then return 1;
else return (&*[j*k+1: j in [0..n]]);
end if; return T; end function;
[T(n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 05 2020
-
T:= (n, k)-> `if`(n=0, 1, mul(j*k+1, j=0..n)):
seq(seq(T(n-k, k), k=0..n), n=0..12); # G. C. Greubel, Mar 05 2020
-
T[n_, k_]= If[n==0, 1, Product[1 + k*i, {i,0,n}]]; Table[T[n-k, k], {n,0,10}, {k,0,n}]//Flatten
-
T(n, k) = if(n==0, 1, prod(j=0, n, j*k+1) );
for(n=0, 12, for(k=0, n, print1(T(n-k, k), ", "))) \\ G. C. Greubel, Mar 05 2020
-
def T(n, k):
if (k==0 and n==0): return 1
else: return product(j*k+1 for j in (0..n))
[[T(n-k, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 05 2020
A144773
10-fold factorials: Product_{k=0..n-1} (10*k+1).
Original entry on oeis.org
1, 1, 11, 231, 7161, 293601, 14973651, 913392711, 64850882481, 5252921480961, 478015854767451, 48279601331512551, 5359035747797893161, 648443325483545072481, 84946075638344404495011, 11977396665006561033796551, 1808586896415990716103279201, 291182490322974505292627951361
Offset: 0
Essentially a duplicate of
A045757.
-
R:=PowerSeriesRing(Rationals(), 15); Coefficients(R!(Laplace( (1-10*x)^(-1/10) ))); // G. C. Greubel, Mar 03 2020
-
G(x):=(1-10*x)^(-1/10): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..14); # Zerinvary Lajos, Apr 03 2009
-
b = 10; Table[FullSimplify[b^n*Gamma[n + 1/b]/Gamma[1/b]], {n, 0, 14}] (* Michael De Vlieger, Sep 14 2016 *)
Join[{1},FoldList[Times,10 Range[0,15]+1]] (* Harvey P. Dale, Oct 24 2022 *)
-
Vec(serlaplace( (1-10*x)^(-1/10) +O('x^15) )) \\ G. C. Greubel, Mar 03 2020
-
[10^n*rising_factorial(1/10,n) for n in (0..15)] # G. C. Greubel, Mar 03 2020
A290319
Triangle read by rows: T(n, k) is the Sheffer triangle ((1 - 4*x)^(-1/4), (-1/4)*log(1 - 4*x)). A generalized Stirling1 triangle.
Original entry on oeis.org
1, 1, 1, 5, 6, 1, 45, 59, 15, 1, 585, 812, 254, 28, 1, 9945, 14389, 5130, 730, 45, 1, 208845, 312114, 122119, 20460, 1675, 66, 1, 5221125, 8011695, 3365089, 633619, 62335, 3325, 91, 1, 151412625, 237560280, 105599276, 21740040, 2441334, 158760, 5964, 120, 1, 4996616625, 7990901865, 3722336388, 823020596, 102304062, 7680414, 355572, 9924, 153, 1, 184874815125, 300659985630, 145717348221, 34174098440, 4608270890, 386479380, 20836578, 722760, 15585, 190, 1
Offset: 0
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 ...
0: 1
1: 1 1
2: 5 6 1
3: 45 59 15 1
4: 585 812 254 28 1
5: 9945 14389 5130 730 45 1
6: 208845 312114 122119 20460 1675 66 1
7: 5221125 8011695 3365089 633619 62335 3325 91 1
8: 151412625 237560280 105599276 21740040 2441334 158760 5964 120 1
...
From _Wolfdieter Lang_, Aug 11 2017: (Start)
Recurrence: T(4, 2) = T(3, 1) + (16 - 3)*T(3, 2) = 59 + 13*15 = 254.
Boas-Buck recurrence for column k=2 and n=4:
T(4, 2) = (4!/2)*(4*(1 + 8*(5/12))*T(2, 2)/2! + 1*(1 + 8*(1/2))*T(3,2)/3!) = (4!/2)*(2*13/3 + 5*15/3!) = 254. (End)
S2[d,a] for [d,a] = [1,0], [2,1], [3,1], [3,2], [4,1] and [4,3] is
A048993,
A154537,
A282629,
A225466,
A285061 and
A225467, respectively.
|S1hat[d,a]| for [d,a] = [1,0], [2,1], [3,1], [3,2] and [4,3] is
A132393,
A028338,
A286718,
A225470 and
A225471, respectively.
-
FoldList[Join[Table[If[i == 1, 0, #[[i-1]]] + (4*#2 - 3)*#[[i]], {i, Length[#]}], {1}] &, {1}, Range[10]] (* Paolo Xausa, Aug 18 2025 *)
A302535
G.f. A(x) satisfies: A(x) = Sum_{n>=0} x^n * A(x)^n * Product_{k=0..n-1} (4*k + 1).
Original entry on oeis.org
1, 1, 6, 61, 846, 14746, 310016, 7665141, 218827766, 7106293246, 259169817316, 10497928495506, 467768758203676, 22739720141372196, 1197560448125948596, 67910602688355999461, 4125144974025630599846, 267199960610924528490486, 18382741943990196237909476, 1338585578875261292134492646, 102848696213697953204782043556
Offset: 0
G.f.: A(x) = 1 + x + 6*x^2 + 61*x^3 + 846*x^4 + 14746*x^5 + 310016*x^6 + 7665141*x^7 + 218827766*x^8 + 7106293246*x^9 + 259169817316*x^10 + ...
such that
A(x) = 1 + x*A(x) + 5*x^2*A(x)^2 + 45*x^3*A(x)^3 + 585*x^4*A(x)^4 + 9945*x^5*A(x)^5 + 208845*x^6*A(x)^6 + ... + x^n * A(x)^n * Product_{k=0..n-1} (4*k + 1) + ...
-
/* Series Reversion of Quartic Factorials g.f.: */
{a(n) = polcoeff((1/x) * serreverse(x/sum(m=0, n, x^m*prod(k=1,m-1,4*k + 1))+x^2*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
-
/* Differential Equation: */
{a(n) = my(A=1); for(i=0, n, A = 1 + x*A^2*(A + 5*x*A')/(x*A +x^2*O(x^n))'); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
-
/* Continued fraction: */
{a(n) = my(A=1, CF = 1+x +x*O(x^n)); for(i=1, n, A=CF; for(k=0, n, CF = 1/(1 - floor(4*floor(3*(n-k+1)/2)/3)*x*A*CF ) )); polcoeff(CF, n)}
for(n=0, 30, print1(a(n), ", "))
A347021
Expansion of e.g.f. 1 / (1 - 4 * log(1 + x))^(1/4).
Original entry on oeis.org
1, 1, 4, 32, 364, 5444, 100520, 2210760, 56406240, 1637877600, 53327583360, 1924096475520, 76198487927040, 3285955396558080, 153273199794071040, 7689131281851770880, 412809183978447306240, 23616192920003184176640, 1434201753814306170808320
Offset: 0
-
nmax = 18; CoefficientList[Series[1/(1 - 4 Log[1 + x])^(1/4), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] 4^k Pochhammer[1/4, k], {k, 0, n}], {n, 0, 18}]
A370915
A(n, k) = 4^n*Pochhammer(k/4, n). Square array read by ascending antidiagonals.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 5, 2, 1, 0, 45, 12, 3, 1, 0, 585, 120, 21, 4, 1, 0, 9945, 1680, 231, 32, 5, 1, 0, 208845, 30240, 3465, 384, 45, 6, 1, 0, 5221125, 665280, 65835, 6144, 585, 60, 7, 1, 0, 151412625, 17297280, 1514205, 122880, 9945, 840, 77, 8, 1
Offset: 0
The array starts:
[0] 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
[1] 0, 1, 2, 3, 4, 5, 6, 7, 8, ...
[2] 0, 5, 12, 21, 32, 45, 60, 77, 96, ...
[3] 0, 45, 120, 231, 384, 585, 840, 1155, 1536, ...
[4] 0, 585, 1680, 3465, 6144, 9945, 15120, 21945, 30720, ...
[5] 0, 9945, 30240, 65835, 122880, 208845, 332640, 504735, 737280, ...
.
Seen as the triangle T(n, k) = A(n - k, k):
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 5, 2, 1;
[4] 0, 45, 12, 3, 1;
[5] 0, 585, 120, 21, 4, 1;
[6] 0, 9945, 1680, 231, 32, 5, 1;
[7] 0, 208845, 30240, 3465, 384, 45, 6, 1;
Columns:
A000007,
A007696,
A001813,
A008545,
A047053,
A007696,
A000407,
A034176,
A052570 and
A034177,
A051617,
A051618,
A051619,
A051620.
-
A := (n, k) -> 4^n*pochhammer(k/4, n):
for n from 0 to 5 do seq(A(n, k), k = 0..9) od;
T := (n, k) -> A(n - k, k): seq(seq(T(n, k), k = 0..n), n = 0..9);
# Using the exponential generating functions of the columns:
EGFcol := proc(k, len) local egf, ser, n; egf := (1 - 4*x)^(-k/4);
ser := series(egf, x, len+2): seq(n!*coeff(ser, x, n), n = 0..len) end:
seq(lprint(EGFcol(n, 9)), n = 0..5);
# Using the generating polynomials for the rows:
P := (n, x) -> local k; add(Stirling1(n, k)*(-4)^(n - k)*x^k, k=0..n):
seq(lprint([n], seq(P(n, k), k = 0..8)), n = 0..5);
# Implementing the LU decomposition of A:
with(LinearAlgebra):
L := Matrix(7, 7, (n, k) -> A371026(n-1, k-1)):
U := Matrix(7, 7, (n, k) -> binomial(n-1, k-1)):
MatrixMatrixMultiply(L, Transpose(U));
-
A[n_, k_] := 4^n * Pochhammer[k/4, n]; Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Mar 06 2024 *)
-
def A(n, k): return 4**n * rising_factorial(k/4, n)
for n in range(6): print([A(n, k) for k in range(9)])
A088996
Triangle T(n, k) read by rows: T(n, k) = Sum_{j=0..n} binomial(j, n-k) * |Stirling1(n, n-j)|.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 2, 7, 6, 0, 6, 29, 46, 24, 0, 24, 146, 329, 326, 120, 0, 120, 874, 2521, 3604, 2556, 720, 0, 720, 6084, 21244, 39271, 40564, 22212, 5040, 0, 5040, 48348, 197380, 444849, 598116, 479996, 212976, 40320
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 2;
0, 2, 7, 6;
0, 6, 29, 46, 24;
0, 24, 146, 329, 326, 120;
0, 120, 874, 2521, 3604, 2556, 720;
0, 720, 6084, 21244, 39271, 40564, 22212, 5040;
0, 5040, 48348, 197380, 444849, 598116, 479996, 212976, 40320;
...
-
A088996:= func< n,k | (&+[(-1)^j*Binomial(j,n-k)*StirlingFirst(n,n-j): j in [0..n]]) >;
[A088996(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 23 2022
-
A059364 := (n, k) -> add(abs(Stirling1(n, n - j))*binomial(j, n - k), j = 0..n);
seq(seq(A059364(n, k), k = 0..n), n = 0..8); # Peter Luschny, Aug 27 2025
-
T[n_, k_]:= T[n, k]= Sum[(-1)^(n-i)*Binomial[i, k] StirlingS1[n+1, n+1-i], {i, 0, n}]; {{1}}~Join~Table[Abs@ T[n, k], {n,0,10}, {k,n+1,0,-1}] (* Michael De Vlieger, Jun 19 2018 *)
-
def A088996(n,k): return add((-1)^(n-i)*binomial(i,k)*stirling_number1(n+1,n+1-i) for i in (0..n))
for n in (0..10): [A088996(n,k) for k in (0..n)] # Peter Luschny, May 12 2013
A153271
Triangle T(n, k) = Product_{j=0..k} (j*n + prime(m)), with T(n, 0) = prime(m) and m = 3, read by rows.
Original entry on oeis.org
5, 5, 30, 5, 35, 315, 5, 40, 440, 6160, 5, 45, 585, 9945, 208845, 5, 50, 750, 15000, 375000, 11250000, 5, 55, 935, 21505, 623645, 21827575, 894930575, 5, 60, 1140, 29640, 978120, 39124800, 1838865600, 99298742400, 5, 65, 1365, 39585, 1464645, 65909025, 3493178325, 213083877825, 14702787569925
Offset: 0
Triangle begins as:
5;
5, 30;
5, 35, 315;
5, 40, 440, 6160;
5, 45, 585, 9945, 208845;
5, 50, 750, 15000, 375000, 11250000;
5, 55, 935, 21505, 623645, 21827575, 894930575;
Sequences related to m values:
-
m:=3;
function T(n,k)
if k eq 0 then return NthPrime(m);
else return (&*[j*n + NthPrime(m): j in [0..k]]);
end if; return T; end function;
[T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 03 2019
-
m:=3; seq(seq(`if`(k=0, ithprime(m), mul(j*n + ithprime(m), j=0..k)), k=0..n), n=0..10); # G. C. Greubel, Dec 03 2019
-
T[n_, k_, m_]:= If[k==0, Prime[m], Product[j*n + Prime[m], {j,0,k}]];
Table[T[n,k,3], {n,0,10}, {k,0,n}]//Flatten
-
T(n,k) = my(m=3); if(k==0, prime(m), prod(j=0,k, j*n + prime(m)) ); \\ G. C. Greubel, Dec 03 2019
-
def T(n, k):
m=3
if (k==0): return nth_prime(m)
else: return product(j*n + nth_prime(m) for j in (0..k))
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 03 2019
Comments