cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 84 results. Next

A134273 A certain partition array in Abramowitz-Stegun order (A-St order), called M_3(5).

Original entry on oeis.org

1, 5, 1, 45, 15, 1, 585, 180, 75, 30, 1, 9945, 2925, 2250, 450, 375, 50, 1, 208845, 59670, 43875, 20250, 8775, 13500, 1875, 900, 1125, 75, 1, 5221125, 1461915, 1044225, 921375, 208845, 307125, 141750, 118125, 20475, 47250, 13125, 1575, 2625, 105, 1
Offset: 1

Views

Author

Wolfdieter Lang, Nov 13 2007

Keywords

Comments

For the A-St order of partitions see the Abramowitz-Stegun reference given in A117506.
Partition number array M_3(5), the k=5 member in the family of a generalization of the multinomial number arrays M_3 = M_3(1) = A036040.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42, ...].
The S2(5,n,m):=A049029(n,m) numbers (generalized Stirling2 numbers) are obtained by summing in row n all numbers with the same part number m. In the same manner the S2(n,m) (Stirling2) numbers A008277 are obtained from the partition array M_3 = A036040.
a(n,k) enumerates unordered forests of increasing quintic (5-ary) trees related to the k-th partition of n in the A-St order. The m-forest is composed of m such trees, with m the number of parts of the partition.

Examples

			Triangle begins:
  [1];
  [51];
  [45,15,1];
  [585,180,75,30,1];
  [9945,2925,2250,450,375,50,1];
  ...
		

Crossrefs

Cf. There are a(4, 3)=75=3*5^2 unordered 2-forest with 4 vertices, composed of two 5-ary increasing trees, each with two vertices: there are 3 increasing labelings (1, 2)(3, 4); (1, 3)(2, 4); (1, 4)(2, 3) and each tree comes in five versions from the 5-ary structure.
Cf. A049120 (row sums also of triangle A049029).
Cf. A134149 (M_3(4) array).

Formula

a(n,k) = n!*Product_{j=1..n} (S2(5,j,1)/j!)^e(n,k,j)/e(n,k,j)! with S2(5,n,1) = A049029(n,1) = A007696(n) = (4*n-3)(!^4) (quadruple- or 4-factorials) and the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n. Exponents 0 can be omitted due to 0!=1.

A134274 A certain partition array in Abramowitz-Stegun order (A-St order), called M_3(5)/M_3.

Original entry on oeis.org

1, 5, 1, 45, 5, 1, 585, 45, 25, 5, 1, 9945, 585, 225, 45, 25, 5, 1, 208845, 9945, 2925, 2025, 585, 225, 125, 45, 25, 5, 1, 5221125, 208845, 49725, 26325, 9945, 2925, 2025, 1125, 585, 225, 125, 45, 25, 5, 1, 151412625, 5221125, 1044225, 447525, 342225
Offset: 1

Views

Author

Wolfdieter Lang, Nov 13 2007

Keywords

Comments

Partition number array M_3(5) = A134273 with each entry divided by the corresponding one of the partition number array M_3 = M_3(1) = A036040; in short M_3(5)/M_3.
The sequence of row lengths is A000041 (partition numbers) [1, 2, 3, 5, 7, 11, 15, 22, 30, 42, ...].
For the A-St order of partitions see the Abramowitz-Stegun reference given in A117506.

Examples

			Triangle begins:
  [1];
  [5,1];
  [45,5,1];
  [585,45,25,5,1];
  [9945,585,225,45,25,5,1];
  ...
		

Crossrefs

Row sums A134276 (also of triangle A134275).
Cf. A134150 (M_3(4)/M_3 array).

Formula

a(n,k) = Product_{j=1..n} S2(5,j,1)^e(n,k,j) with S2(5,n,1) = A049029(n,1) = A007696(n) = (4*n-3)(!^4) (quadruple- or 4-factorials) and with the exponent e(n,k,j) of j in the k-th partition of n in the A-St ordering of the partitions of n.
a(n,k) = A134273(n,k)/A036040(n,k) (division of partition arrays M_3(5) by M_3).

A142589 Square array T(n,m) = Product_{i=0..m} (1+n*i) read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 24, 15, 4, 1, 1, 120, 105, 28, 5, 1, 1, 720, 945, 280, 45, 6, 1, 1, 5040, 10395, 3640, 585, 66, 7, 1, 1, 40320, 135135, 58240, 9945, 1056, 91, 8, 1, 1, 362880, 2027025, 1106560, 208845, 22176, 1729, 120, 9, 1, 1, 3628800, 34459425, 24344320, 5221125, 576576, 43225, 2640, 153, 10, 1
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 22 2008

Keywords

Comments

Antidiagonal sums are {1, 2, 4, 11, 45, 260, 1998, 19735, 244797, 3729346, 68276276, ...}.

Examples

			The transpose of the array is:
    1,    1,     1,     1,      1,      1,      1,      1,     1,
    1,    2,     3,     4,      5,      6,      7,      8,     9,
    1,    6,    15,    28,     45,     66,     91,     120,   153, ... A000384
    1,   24,   105,   280,    585,   1056,   1729,    2640,  3825, ... A011199
    1,  120,   945,  3640,   9945,  22176,  43225,   76560, 126225,... A011245
    1,  720, 10395, 58240, 208845, 576576, 1339975, 2756160,...
        /      |       \       \
   A000142  A001147  A007559  A007696
		

Crossrefs

Cf. A000142, A006882(2n-1) = A001147, A007661(3n-2) = A007559, A007662(4n-3) = A007696, A153274.

Programs

  • Magma
    function T(n,k)
      if k eq 0 or n eq 0 then return 1;
      else return (&*[j*k+1: j in [0..n]]);
      end if; return T; end function;
    [T(n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 05 2020
    
  • Maple
    T:= (n, k)-> `if`(n=0, 1, mul(j*k+1, j=0..n)):
    seq(seq(T(n-k, k), k=0..n), n=0..12); # G. C. Greubel, Mar 05 2020
  • Mathematica
    T[n_, k_]= If[n==0, 1, Product[1 + k*i, {i,0,n}]]; Table[T[n-k, k], {n,0,10}, {k,0,n}]//Flatten
  • PARI
    T(n, k) = if(n==0, 1, prod(j=0, n, j*k+1) );
    for(n=0, 12, for(k=0, n, print1(T(n-k, k), ", "))) \\ G. C. Greubel, Mar 05 2020
    
  • Sage
    def T(n, k):
        if (k==0 and n==0): return 1
        else: return product(j*k+1 for j in (0..n))
    [[T(n-k, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Mar 05 2020

Extensions

Edited by M. F. Hasler, Oct 28 2014
More terms added by G. C. Greubel, Mar 05 2020

A144773 10-fold factorials: Product_{k=0..n-1} (10*k+1).

Original entry on oeis.org

1, 1, 11, 231, 7161, 293601, 14973651, 913392711, 64850882481, 5252921480961, 478015854767451, 48279601331512551, 5359035747797893161, 648443325483545072481, 84946075638344404495011, 11977396665006561033796551, 1808586896415990716103279201, 291182490322974505292627951361
Offset: 0

Views

Author

Philippe Deléham, Sep 21 2008

Keywords

Crossrefs

Essentially a duplicate of A045757.
Cf. k-fold factorials: A000142 ("1-fold"), A001147 (2-fold), A007559 (3), A007696 (4), A008548 (5), A008542 (6), A045754 (7), A045755 (8), A045756 (9), A256268 (combined table).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 15); Coefficients(R!(Laplace( (1-10*x)^(-1/10) ))); // G. C. Greubel, Mar 03 2020
    
  • Maple
    G(x):=(1-10*x)^(-1/10): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..14); # Zerinvary Lajos, Apr 03 2009
  • Mathematica
    b = 10; Table[FullSimplify[b^n*Gamma[n + 1/b]/Gamma[1/b]], {n, 0, 14}] (* Michael De Vlieger, Sep 14 2016 *)
    Join[{1},FoldList[Times,10 Range[0,15]+1]] (* Harvey P. Dale, Oct 24 2022 *)
  • PARI
    Vec(serlaplace( (1-10*x)^(-1/10) +O('x^15) )) \\ G. C. Greubel, Mar 03 2020
    
  • Sage
    [10^n*rising_factorial(1/10,n) for n in (0..15)] # G. C. Greubel, Mar 03 2020

Formula

a(n) = Sum_{k = 0..n} (-10)^(n - k) * A048994(n, k).
a(n) = Sum_{k = 0..n} 10^(n - k) * A132393(n, k).
E.g.f.: (1 - 10*x)^(-1/10).
a(n) = A045757(n), n>0.
a(n) = (-9)^n * Sum_{k = 0..n} (10/9)^k * s(n + 1,n + 1 - k), where s(n, k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
G.f.: 1/Q(0), where Q(k) = 1 - (10*k+1)*x/( 1 - 10*x*(k+1)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jan 09 2014
a(n) = 10^n * Gamma(n + 1/10) / Gamma(1/10). - Artur Jasinski Aug 23 2016
a(n) ~ sqrt(2*Pi)*10^n*n^(n-2/5)/(Gamma(1/10)*exp(n)). - Ilya Gutkovskiy, Sep 11 2016
D-finite with recurrence: a(n) - (10*n-9)*a(n-1) = 0. - R. J. Mathar, Jan 20 2020
Sum_{n>=0} 1/a(n) = 1 + (e/10^9)^(1/10)*(Gamma(1/10) - Gamma(1/10, 1/10)). - Amiram Eldar, Dec 22 2022

A290319 Triangle read by rows: T(n, k) is the Sheffer triangle ((1 - 4*x)^(-1/4), (-1/4)*log(1 - 4*x)). A generalized Stirling1 triangle.

Original entry on oeis.org

1, 1, 1, 5, 6, 1, 45, 59, 15, 1, 585, 812, 254, 28, 1, 9945, 14389, 5130, 730, 45, 1, 208845, 312114, 122119, 20460, 1675, 66, 1, 5221125, 8011695, 3365089, 633619, 62335, 3325, 91, 1, 151412625, 237560280, 105599276, 21740040, 2441334, 158760, 5964, 120, 1, 4996616625, 7990901865, 3722336388, 823020596, 102304062, 7680414, 355572, 9924, 153, 1, 184874815125, 300659985630, 145717348221, 34174098440, 4608270890, 386479380, 20836578, 722760, 15585, 190, 1
Offset: 0

Views

Author

Wolfdieter Lang, Aug 08 2017

Keywords

Comments

This generalization of the unsigned Stirling1 triangle A132393 is called here |S1hat[4,1]|.
The signed matrix S1hat[4,1] with elements (-1)^(n-k)*|S1hat[4,1]|(n, k) is the inverse of the generalized Stirling2 Sheffer matrix S2hat[4,1] with elements S2[4,1](n, k)/d^k, where S2[4,1] is Sheffer (exp(x), exp(4*x) - 1), given in A285061. See also the P. Bala link below for the scaled and signed version s_{(4,0,1)}.
For the general |S1hat[d,a]| case see a comment in A286718.

Examples

			The triangle T(n, k) begins:
  n\k         0         1         2        3       4      5    6   7  8 ...
  0:          1
  1:          1         1
  2:          5         6         1
  3:         45        59        15        1
  4:        585       812       254       28       1
  5:       9945     14389      5130      730      45      1
  6:     208845    312114    122119    20460    1675     66    1
  7:    5221125   8011695   3365089   633619   62335   3325   91   1
  8:  151412625 237560280 105599276 21740040 2441334 158760 5964 120  1
  ...
From _Wolfdieter Lang_, Aug 11 2017: (Start)
Recurrence: T(4, 2) = T(3, 1) + (16 - 3)*T(3, 2) = 59 + 13*15 = 254.
Boas-Buck recurrence for column k=2 and n=4:
T(4, 2) = (4!/2)*(4*(1 + 8*(5/12))*T(2, 2)/2! + 1*(1 + 8*(1/2))*T(3,2)/3!) = (4!/2)*(2*13/3 + 5*15/3!) = 254. (End)
		

Crossrefs

S2[d,a] for [d,a] = [1,0], [2,1], [3,1], [3,2], [4,1] and [4,3] is A048993, A154537, A282629, A225466, A285061 and A225467, respectively.
|S1hat[d,a]| for [d,a] = [1,0], [2,1], [3,1], [3,2] and [4,3] is A132393, A028338, A286718, A225470 and A225471, respectively.
Columns k=0..3 give A007696, A024382(n-1), A383700, A383701.
Row sums: A001813. Alternating row sums: A000007.

Programs

  • Mathematica
    FoldList[Join[Table[If[i == 1, 0, #[[i-1]]] + (4*#2 - 3)*#[[i]], {i, Length[#]}], {1}] &, {1}, Range[10]] (* Paolo Xausa, Aug 18 2025 *)

Formula

Recurrence: T(n, k) = T(n-1, k-1) + (4*n - 3)*T(n-1, k), for n >= 1, k = 0..n, and T(n, -1) = 0, T(0, 0) = 1 and T(n, k) = 0 for n < k.
E.g.f. of row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k (i.e., e.g.f. of the triangle): (1 - 4*z)^{-(x + 1)/4}.
E.g.f. of column k is (1 - 4*x)^(-1/4)*((-1/4)*log(1 - 4*x))^k/k!.
Recurrence for row polynomials is R(n, x) = (x+1)*R(n-1, x+4), with R(0, x) = 1. Row polynomial R(n, x) = risefac(4,1;x,n) with the rising factorial risefac(d,a;x,n) :=Product_{j=0..n-1} (x + (a + j*d)). (For the signed case see the Bala link, eq. (16)).
T(n, k) = sigma^{(n)}{n-k}(a_0, a_1, ..., a{n-1}) with the elementary symmetric functions with indeterminates a_j = 1 + 4*j.
T(n, k) = Sum_{j=0..n-k} binomial(n-j, k)*|S1|(n, n-j)*4^j, with the unsigned Stirling1 triangle |S1| = A132393.
Boas-Buck type recurrence for column sequence k: T(n, k) = (n!/(n - k)) * Sum_{p=k..n-1} 4^(n-1-p)*(1 + 4*k*beta(n-1-p))*T(p, k)/p!, for n > k >= 0, with input T(k, k) = 1, and beta(k) = A002208(k+1)/A002209(k+1), beginning with {1/2, 5/12, 3/8, 251/720, ...}. See a comment and references in A286718. - Wolfdieter Lang, Aug 11 2017

A302535 G.f. A(x) satisfies: A(x) = Sum_{n>=0} x^n * A(x)^n * Product_{k=0..n-1} (4*k + 1).

Original entry on oeis.org

1, 1, 6, 61, 846, 14746, 310016, 7665141, 218827766, 7106293246, 259169817316, 10497928495506, 467768758203676, 22739720141372196, 1197560448125948596, 67910602688355999461, 4125144974025630599846, 267199960610924528490486, 18382741943990196237909476, 1338585578875261292134492646, 102848696213697953204782043556
Offset: 0

Views

Author

Paul D. Hanna, Apr 09 2018

Keywords

Examples

			G.f.: A(x) = 1 + x + 6*x^2 + 61*x^3 + 846*x^4 + 14746*x^5 + 310016*x^6 + 7665141*x^7 + 218827766*x^8 + 7106293246*x^9 + 259169817316*x^10 + ...
such that
A(x) = 1 + x*A(x) + 5*x^2*A(x)^2 + 45*x^3*A(x)^3 + 585*x^4*A(x)^4 + 9945*x^5*A(x)^5 + 208845*x^6*A(x)^6 + ... + x^n * A(x)^n * Product_{k=0..n-1} (4*k + 1) + ...
		

Crossrefs

Programs

  • PARI
    /* Series Reversion of Quartic Factorials g.f.: */
    {a(n) = polcoeff((1/x) * serreverse(x/sum(m=0, n, x^m*prod(k=1,m-1,4*k + 1))+x^2*O(x^n)), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* Differential Equation: */
    {a(n) = my(A=1); for(i=0, n, A = 1 + x*A^2*(A + 5*x*A')/(x*A +x^2*O(x^n))'); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* Continued fraction: */
    {a(n) = my(A=1, CF = 1+x +x*O(x^n)); for(i=1, n, A=CF; for(k=0, n, CF = 1/(1 - floor(4*floor(3*(n-k+1)/2)/3)*x*A*CF ) )); polcoeff(CF, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) satisfies:
(1) A(x) = Sum_{n>=0} x^n * A(x)^n * Product_{k=0..n-1} (4*k + 1).
(2) A(x) = (1/x)*Series_Reversion( x/F(x) ), where F(x) = Sum_{n>=0} A007696(n)*x^n, the o.g.f. of the quartic factorials.
(3) A(x) = 1 + x*A(x)^2 * (A(x) + 5*x*A'(x)) / (A(x) + x*A'(x)).
(4) A(x) = 1/(1 - x*A(x)/(1 - 4*x*A(x)/(1 - 5*x*A(x)/(1 - 8*x*A(x)/(1 - 9*x*A(x)/(1 - 12*x*A(x)/(1 - 13*x*A(x)/(1 - ...)))))))), a continued fraction.
a(n) ~ sqrt(Pi) * 2^(2*n + 1/2) * n^(n - 1/4) / (Gamma(1/4) * exp(n - 1/4)). - Vaclav Kotesovec, Jun 18 2019

A347021 Expansion of e.g.f. 1 / (1 - 4 * log(1 + x))^(1/4).

Original entry on oeis.org

1, 1, 4, 32, 364, 5444, 100520, 2210760, 56406240, 1637877600, 53327583360, 1924096475520, 76198487927040, 3285955396558080, 153273199794071040, 7689131281851770880, 412809183978447306240, 23616192920003184176640, 1434201753814306170808320
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 11 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 18; CoefficientList[Series[1/(1 - 4 Log[1 + x])^(1/4), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[StirlingS1[n, k] 4^k Pochhammer[1/4, k], {k, 0, n}], {n, 0, 18}]

Formula

a(n) = Sum_{k=0..n} Stirling1(n,k) * A007696(k).
a(n) ~ n! * exp(1/16) / (Gamma(1/4) * 2^(1/2) * n^(3/4) * (exp(1/4) - 1)^(n + 1/4)). - Vaclav Kotesovec, Aug 14 2021
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k-1) * (4 - 3*k/n) * (k-1)! * binomial(n,k) * a(n-k). - Seiichi Manyama, Sep 11 2023

A370915 A(n, k) = 4^n*Pochhammer(k/4, n). Square array read by ascending antidiagonals.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 5, 2, 1, 0, 45, 12, 3, 1, 0, 585, 120, 21, 4, 1, 0, 9945, 1680, 231, 32, 5, 1, 0, 208845, 30240, 3465, 384, 45, 6, 1, 0, 5221125, 665280, 65835, 6144, 585, 60, 7, 1, 0, 151412625, 17297280, 1514205, 122880, 9945, 840, 77, 8, 1
Offset: 0

Views

Author

Peter Luschny, Mar 06 2024

Keywords

Comments

The sequence of square arrays A(m, n, k) starts: A094587 (m = 1), A370419 (m = 2), A371077(m = 3), this array (m = 4).

Examples

			The array starts:
[0] 1,    1,     1,     1,      1,      1,      1,      1,      1, ...
[1] 0,    1,     2,     3,      4,      5,      6,      7,      8, ...
[2] 0,    5,    12,    21,     32,     45,     60,     77,     96, ...
[3] 0,   45,   120,   231,    384,    585,    840,   1155,   1536, ...
[4] 0,  585,  1680,  3465,   6144,   9945,  15120,  21945,  30720, ...
[5] 0, 9945, 30240, 65835, 122880, 208845, 332640, 504735, 737280, ...
.
Seen as the triangle T(n, k) = A(n - k, k):
[0] 1;
[1] 0,      1;
[2] 0,      1,     1;
[3] 0,      5,     2,    1;
[4] 0,     45,    12,    3,   1;
[5] 0,    585,   120,   21,   4,  1;
[6] 0,   9945,  1680,  231,  32,  5, 1;
[7] 0, 208845, 30240, 3465, 384, 45, 6, 1;
		

Crossrefs

Similar square arrays: A094587, A370419, A371077.
Cf. A370913 (row sums of triangle), A371026.

Programs

  • Maple
    A := (n, k) -> 4^n*pochhammer(k/4, n):
    for n from 0 to 5 do seq(A(n, k), k = 0..9) od;
    T := (n, k) -> A(n - k, k): seq(seq(T(n, k), k = 0..n), n = 0..9);
    # Using the exponential generating functions of the columns:
    EGFcol := proc(k, len) local egf, ser, n; egf := (1 - 4*x)^(-k/4);
    ser := series(egf, x, len+2): seq(n!*coeff(ser, x, n), n = 0..len) end:
    seq(lprint(EGFcol(n, 9)), n = 0..5);
    # Using the generating polynomials for the rows:
    P := (n, x) -> local k; add(Stirling1(n, k)*(-4)^(n - k)*x^k, k=0..n):
    seq(lprint([n], seq(P(n, k), k = 0..8)), n = 0..5);
    # Implementing the LU decomposition of A:
    with(LinearAlgebra):
    L := Matrix(7, 7, (n, k) -> A371026(n-1, k-1)):
    U := Matrix(7, 7, (n, k) -> binomial(n-1, k-1)):
    MatrixMatrixMultiply(L, Transpose(U));
  • Mathematica
    A[n_, k_] := 4^n * Pochhammer[k/4, n]; Table[A[n - k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Mar 06 2024 *)
  • SageMath
    def A(n, k): return 4**n * rising_factorial(k/4, n)
    for n in range(6): print([A(n, k) for k in range(9)])

Formula

A(n, k) = 4^n*Product_{j=0..n-1} (j + k/4).
A(n, k) = 4^n*Gamma(k/4 + n) / Gamma(k/4) for k >= 1.
The exponential generating function for column k is (1 - 4*x)^(-k/4). But much more is true: (1 - m*x)^(-k/m) are the exponential generating functions for the columns of the arrays A(m, n, k) = m^n*Pochhammer(k/m, n).
The polynomials P(n, x) = Sum_{k=0..n} Stirling1(n, k)*(-4)^(n-k)*x^k are ordinary generating functions for row n, i.e., A(n, k) = P(n, k).
In A370419 Werner Schulte pointed out how A371025 is related to the LU decomposition of A370419. Here the same procedure can be used and amounts to A = A371026 * transpose(binomial triangle), where '*' denotes matrix multiplication. See the Maple section for an implementation.

A088996 Triangle T(n, k) read by rows: T(n, k) = Sum_{j=0..n} binomial(j, n-k) * |Stirling1(n, n-j)|.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 2, 7, 6, 0, 6, 29, 46, 24, 0, 24, 146, 329, 326, 120, 0, 120, 874, 2521, 3604, 2556, 720, 0, 720, 6084, 21244, 39271, 40564, 22212, 5040, 0, 5040, 48348, 197380, 444849, 598116, 479996, 212976, 40320
Offset: 0

Views

Author

Philippe Deléham, Dec 01 2003, Aug 17 2007

Keywords

Examples

			Triangle begins:
  1;
  0,    1;
  0,    1,     2;
  0,    2,     7,      6;
  0,    6,    29,     46,     24;
  0,   24,   146,    329,    326,    120;
  0,  120,   874,   2521,   3604,   2556,    720;
  0,  720,  6084,  21244,  39271,  40564,  22212,   5040;
  0, 5040, 48348, 197380, 444849, 598116, 479996, 212976, 40320;
  ...
		

Crossrefs

Variant: A059364, diagonals give A000007, A000142, A067318.
Cf. A001147 (row sums), A048994, A084938.

Programs

  • Magma
    A088996:= func< n,k | (&+[(-1)^j*Binomial(j,n-k)*StirlingFirst(n,n-j): j in [0..n]]) >;
    [A088996(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 23 2022
  • Maple
    A059364 := (n, k) -> add(abs(Stirling1(n, n - j))*binomial(j, n - k), j = 0..n);
    seq(seq(A059364(n, k), k = 0..n), n = 0..8);  # Peter Luschny, Aug 27 2025
  • Mathematica
    T[n_, k_]:= T[n, k]= Sum[(-1)^(n-i)*Binomial[i, k] StirlingS1[n+1, n+1-i], {i, 0, n}]; {{1}}~Join~Table[Abs@ T[n, k], {n,0,10}, {k,n+1,0,-1}] (* Michael De Vlieger, Jun 19 2018 *)
  • Sage
    def A088996(n,k): return add((-1)^(n-i)*binomial(i,k)*stirling_number1(n+1,n+1-i) for i in (0..n))
    for n in (0..10): [A088996(n,k) for k in (0..n)]  # Peter Luschny, May 12 2013
    

Formula

T(n, k) given by [0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] DELTA [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, ...] where DELTA is the operator defined in A084938. [Original name.]
Sum_{k=0..n} (-1)^k*T(n,k) = (-1)^n.
From Vladeta Jovovic, Dec 15 2004: (Start)
E.g.f.: (1-y-y*x)^(-1/(1+x)).
Sum_{k=0..n} T(n, k)*x^k = Product_{k=1..n} (k*x+k-1). (End)
T(n, k) = n*T(n-1, k-1) + (n-1)*T(n-1, k); T(0, 0) = 1, T(0, k) = 0 if k > 0, T(n, k) = 0 if k < 0. - Philippe Deléham, May 22 2005
Sum_{k=0..n} T(n,k)*x^(n-k) = A019590(n+1), A000012(n), A000142(n), A001147(n), A007559(n), A007696(n), A008548(n), A008542(n), A045754(n), A045755(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, respectively. Sum_{k=0..n} T(n,k)*x^k = A033999(n), A000007(n), A001147(n), A008544(n), A008545(n), A008546(n), A008543(n), A049209(n), A049210(n), A049211(n), A049212(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, respectively. - Philippe Deléham, Aug 10 2007
T(n, k) = Sum_{j=0..n} (-1)^j*binomial(j, n-k)*StirlingS1(n, n-j). - G. C. Greubel, Feb 23 2022

Extensions

New name using a formula of G. C. Greubel by Peter Luschny, Aug 27 2025

A153271 Triangle T(n, k) = Product_{j=0..k} (j*n + prime(m)), with T(n, 0) = prime(m) and m = 3, read by rows.

Original entry on oeis.org

5, 5, 30, 5, 35, 315, 5, 40, 440, 6160, 5, 45, 585, 9945, 208845, 5, 50, 750, 15000, 375000, 11250000, 5, 55, 935, 21505, 623645, 21827575, 894930575, 5, 60, 1140, 29640, 978120, 39124800, 1838865600, 99298742400, 5, 65, 1365, 39585, 1464645, 65909025, 3493178325, 213083877825, 14702787569925
Offset: 0

Views

Author

Roger L. Bagula, Dec 22 2008

Keywords

Comments

Row sums are {5, 35, 355, 6645, 219425, 11640805, 917404295, 101177741765, 14919432040765, 2839006665525525, 677815000136926955, ...}.

Examples

			Triangle begins as:
  5;
  5, 30;
  5, 35, 315;
  5, 40, 440,  6160;
  5, 45, 585,  9945, 208845;
  5, 50, 750, 15000, 375000, 11250000;
  5, 55, 935, 21505, 623645, 21827575, 894930575;
		

Crossrefs

Cf. A153271 (m=2), this sequence (m=3), A153272 (m=4).
Sequences related to m values:

Programs

  • Magma
    m:=3;
    function T(n,k)
      if k eq 0 then return NthPrime(m);
      else return (&*[j*n + NthPrime(m): j in [0..k]]);
      end if; return T; end function;
    [T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 03 2019
    
  • Maple
    m:=3; seq(seq(`if`(k=0, ithprime(m), mul(j*n + ithprime(m), j=0..k)), k=0..n), n=0..10); # G. C. Greubel, Dec 03 2019
  • Mathematica
    T[n_, k_, m_]:= If[k==0, Prime[m], Product[j*n + Prime[m], {j,0,k}]];
    Table[T[n,k,3], {n,0,10}, {k,0,n}]//Flatten
  • PARI
    T(n,k) = my(m=3); if(k==0, prime(m), prod(j=0,k, j*n + prime(m)) ); \\ G. C. Greubel, Dec 03 2019
    
  • Sage
    def T(n, k):
        m=3
        if (k==0): return nth_prime(m)
        else: return product(j*n + nth_prime(m) for j in (0..k))
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 03 2019

Formula

T(n, k) = Product_{j=0..k} (j*n + prime(m)), with T(n, 0) = prime(m) and m = 3.

Extensions

Edited by G. C. Greubel, Dec 03 2019
Previous Showing 51-60 of 84 results. Next