cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 466 results. Next

A319616 Number of non-isomorphic square multiset partitions of weight n.

Original entry on oeis.org

1, 1, 2, 4, 11, 27, 80, 230, 719, 2271, 7519, 25425, 88868, 317972, 1168360, 4392724, 16903393, 66463148, 266897917, 1093550522, 4568688612, 19448642187, 84308851083, 371950915996, 1669146381915, 7615141902820, 35304535554923, 166248356878549, 794832704948402, 3856672543264073, 18984761300310500
Offset: 0

Views

Author

Gus Wiseman, Sep 25 2018

Keywords

Comments

A multiset partition or hypergraph is square if its length (number of blocks or edges) is equal to its number of vertices.
Also the number of square integer matrices with entries summing to n and no empty rows or columns, up to permutation of rows and columns.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 11 multiset partitions:
1: {{1}}
2: {{1,1}}
   {{1}, {2}}
3: {{1,1,1}}
   {{1}, {2,2}}
   {{2}, {1,2}}
   {{1}, {2},{3}}
4: {{1,1,1,1}}
   {{1}, {1,2,2}}
   {{1}, {2,2,2}}
   {{2}, {1,2,2}}
   {{1,1}, {2,2}}
   {{1,2}, {1,2}}
   {{1,2}, {2,2}}
   {{1}, {1}, {2,3}}
   {{1}, {2}, {3,3}}
   {{1}, {3}, {2,3}}
   {{1}, {2}, {3}, {4}}
Non-isomorphic representatives of the a(4) = 11 square matrices:
. [4]
.
. [1 0]   [1 0]   [0 1]   [2 0]   [1 1]   [1 1]
. [1 2]   [0 3]   [1 2]   [0 2]   [1 1]   [0 2]
.
. [1 0 0]   [1 0 0]   [1 0 0]
. [1 0 0]   [0 1 0]   [0 0 1]
. [0 1 1]   [0 0 2]   [0 1 1]
.
. [1 0 0 0]
. [0 1 0 0]
. [0 0 1 0]
. [0 0 0 1]
		

Crossrefs

Programs

  • Mathematica
    (* See A318795 for M[m, n, k]. *)
    T[n_, k_] := M[k, k, n] - 2 M[k, k-1, n] + M[k-1, k-1, n];
    a[0] = 1; a[n_] := Sum[T[n, k], {k, 1, n}];
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 16}] (* Jean-François Alcover, Nov 24 2018, after Andrew Howroyd *)
  • PARI
    \\ See A318795 for M.
    a(n) = {if(n==0, 1, sum(i=1, n, M(i,i,n) - 2*M(i,i-1,n) + M(i-1,i-1,n)))} \\ Andrew Howroyd, Nov 15 2018
    
  • PARI
    \\ See A340652 for G.
    seq(n)={Vec(1 + sum(k=1,n,polcoef(G(k,n,n,y),k,y) - polcoef(G(k-1,n,n,y),k,y)))} \\ Andrew Howroyd, Jan 15 2024

Extensions

a(11)-a(20) from Andrew Howroyd, Nov 15 2018
a(21) onwards from Andrew Howroyd, Jan 15 2024

A269134 Number of combinatory separations of normal multisets of weight n.

Original entry on oeis.org

1, 4, 14, 57, 223, 948, 3940, 16994, 72964, 317959, 1385592, 6085763, 26738139, 117939291, 520553999, 2301781692, 10181786176, 45074744448, 199558036891, 883670342156, 3912320450786
Offset: 1

Views

Author

Gus Wiseman, Feb 20 2016

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers. The type of a multiset of integers is the unique normal multiset that has the same sequence of multiplicities when its entries are taken in increasing order. For example the type of 335556 is 112223.
If and only if there exists a multiset partition p whose multiset union has type h and where g = {g_1,...,g_n} is the multiset of types of the blocks of p, there exists a *combinatory separation* which is regarded as a multi-arrow p:h<=g. For example 1122<={12,11} is *not* a combinatory separation because one cannot partition a multiset of type 1122 into two blocks where one block has two distinct elements and the other block has two equal elements. Normal multisets N and combinatory separations S comprise a multi-order (N,S). The value of a(n) is the total number of *distinct* combinatory separations h<=g where h has weight n.
The term "combinatory separation" is inspired by MacMahon's inscrutable "Combinatory Analysis" (1915) which states: "A partition of any number is "separated" into "separates" by writing down a set [sic] of partitions, each partition in its own brackets, from left to right so that when all of the parts of these partitions are assembled in a single bracket, the partition separated is reproduced."

Examples

			For a(3) the 14 distinct combinatory separations grouped according to head are: 111<={111}, 111<={1,11}, 111<={1,1,1}; 112<={112}, 112<={1,11}, 112<={1,12}, 112<={1,1,1}; 122<={122}, 122<={1,11}, 122<={1,12}, 122<={1,1,1}; 123<={123}, 123<={1,12}, 123<={1,1,1}.
Note that in this enumeration the two multiset partitions {{1},{2,3}}:123<={1,12} and {{1,2},{3}}:123<={1,12} do not represent distinct multi-arrows and consequently are counted only once, whereas the two multiset partitions {{1},{1,2}}:112<={1,12} and {{1,2},{2}}:122<={1,12} are counted separately even though they have the same multiset of block-types.
		

Crossrefs

Cf. A255906 (multiset partitions of normal multisets of weight n), A096443 (multiset partitions of multiset class representatives), A007716 (non-isomorphic multiset partitions of weight n).

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    normize[m_]:=m/.Rule@@@Table[{Union[m][[i]],i},{i,Length[Union[m]]}];
    Table[Length[Union@@Table[{m,Sort[normize/@#]}&/@mps[m],{m,allnorm[n]}]],{n,7}] (* Gus Wiseman, Aug 29 2018 *)

Extensions

a(9) from Gus Wiseman, Aug 29 2018
a(10) from Robert Price, Sep 14 2018
a(11)-a(21) from Martin Fuller, Mar 22 2025

A281113 Number of twice-factorizations of n. Number of ways to choose a postpositive factorization of each part of a postpositive factorization of n.

Original entry on oeis.org

1, 1, 3, 1, 3, 1, 6, 3, 3, 1, 9, 1, 3, 3, 15, 1, 9, 1, 9, 3, 3, 1, 23, 3, 3, 6, 9, 1, 12, 1, 28, 3, 3, 3, 32, 1, 3, 3, 23, 1, 12, 1, 9, 9, 3, 1, 58, 3, 9, 3, 9, 1, 23, 3, 23, 3, 3, 1, 41, 1, 3, 9, 66, 3, 12, 1, 9, 3, 12, 1, 84, 1, 3, 9, 9, 3, 12, 1, 58, 15, 3
Offset: 2

Views

Author

Gus Wiseman, Jan 14 2017

Keywords

Comments

A postpositive number is a positive integer other than 1. A postpositive factorization of n is a finite orderless sequence of postpositive numbers whose product is n.

Examples

			The a(20)=9 twice-factorizations are: ((20)), ((2*10)), ((4*5)), ((2*2*5)), ((2)*(10)), ((2)*(2*5)), ((4)*(5)), ((2*2)*(5)), ((2)*(2)*(5)).
Twice-factorizations of 32 organized by composite:
((2)(2)(2)(2)(2)) ((2)(2)(2)(2 2)) ((2)(2)(2 2 2)) ((2)(2 2)(2 2)) ((2)(2 2 2 2)) ((2 2)(2 2 2)) ((2 2 2 2 2))
((2)(2)(2)(4))    ((2)(2)(2 4))    ((2)(2 2)(4))   ((2)(4)(2 2))   ((2)(2 2 4))   ((2 2)(2 4))   ((4)(2 2 2))  ((2 2 2 4))
((2)(2)(8))       ((2)(2 8))       ((2 2)(8))      ((2 2 8))
((2)(4)(4))       ((2)(4 4))       ((4)(2 4))      ((2 4 4))
((2)(16))         ((2 16))
((4)(8))          ((4 8))
((32)).
Twice-factorizations of 32 organized by domain:
((2)(2)(2)(2)(2))
((2)(2)(2)(2 2)) ((2)(2)(2)(4))
((2)(2)(2 2 2))  ((2)(2)(2 4)) ((2)(2)(8))
((2)(2 2)(2 2))  ((2)(2 2)(4)) ((2)(4)(2 2)) ((2)(4)(4))
((2)(2 2 2 2))   ((2)(2 2 4))  ((2)(2 8))    ((2)(4 4))   ((2)(16))
((2 2)(2 2 2))   ((2 2)(2 4))  ((2 2)(8))    ((4)(2 2 2)) ((4)(2 4)) ((4)(8))
((2 2 2 2 2))    ((2 2 2 4))   ((2 2 8))     ((2 4 4))    ((2 16))   ((4 8)) ((32)).
		

Crossrefs

Cf. A001055(n) = number of factorizations of n, A050336(n) = number of orderless twice-factorizations of n, A162247(n) = factors of factorizations of n, A063834(n) = a(p^(n-1)), A007716, A269134, A281116.

Programs

  • Mathematica
    postfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[postfacs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    twicefacs[n_]:=Join@@Tuples/@Map[postfacs,postfacs[n],{2}];
    Table[Length[twicefacs[n]],{n,2,24}]

A060223 Number of orbits of length n under the map whose periodic points are counted by A000670.

Original entry on oeis.org

1, 1, 1, 4, 18, 108, 778, 6756, 68220, 787472, 10224702, 147512052, 2340963570, 40527565260, 760095923082, 15352212731820, 332228417589720, 7668868648772700, 188085259069430744, 4884294069438337428, 133884389812214097774, 3863086904690670182596
Offset: 0

Views

Author

Thomas Ward, Mar 21 2001

Keywords

Comments

From Gus Wiseman, Oct 14 2016: (Start)
A finite sequence is normal if it spans an initial interval of positive integers. The *-product of two or more finite sequences is defined to be the lexicographically minimal sequence obtainable by shuffling the sequences together. For example, (2 2 1) * (2 1 3) = (2 1 2 2 1 3). If Q is the set of compositions (finite sequences of positive integers) then (Q,*) is an Abelian group freely generated by a set P of prime sequences. The number of normal prime sequences of length n is equal to a(n). See example 2 and Mathematica program 2.
If N is the species (endofunctor over the category of finite sets and permutations) of unlabeled necklaces and N(S) represents the set of all non-isomorphic primitive necklaces of length n=|S|, then the numbers |N(S)| are equal to the numbers a(|S|) for any finite set S. This is because the number of orderless *-factorizations (see A034691 and A269134) of any finite sequence q is equal to the number of multiset partitions (see A007716 and A255906) of the multiset of prime factors of q. (End)

Examples

			a(5) = 108 since A000670(5) is 541 and A000670(1) is 1, so there must be (541-1)/5 = 108 orbits of length 5.
From _Gus Wiseman_, Oct 14 2016: (Start)
The a(4) = 18 normal prime sequences are the columns:
[2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4]
[1 2 2 1 1 1 2 2 2 2 3 3 1 1 2 2 3 3]
[1 1 2 1 2 2 1 1 2 3 1 2 2 3 1 3 1 2]
[1 1 1 2 1 2 1 2 1 1 2 1 3 2 3 1 2 1].
The symmetric function A(x_1,x_2,x_3,...) expanded in terms of monomial symmetric functions m(y) (indexed by integer partitions y) is equal to:
A = m(1) +
    m(11) +
    (2*m(21) + 2*m(111) +
    (m(22) + 2*m(31) + 9*m(211) + 6*m(1111)) +
    (4*m(32) + 2*m(41) + 18*m(221) + 12*m(311) + 48*m(2111) + 24*m(11111)) +
    (3*m(33) + 4*m(42) + 2*m(51) + 14*m(222) + 60*m(321) + 15*m(411) + 180*m(2211) + 80*m(3111) + 300*m(21111) + 120*m(111111)) + ... (End)
		

Crossrefs

Cf. A000670, A034691 (multisets of compositions), A269134, A007716, A277427, A215474, A255906.
Row sums of A254040.

Programs

  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[#] HurwitzLerchPhi[1/2, -n/#, 0]/2 &] / n; a[0] = 1; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 30 2016 *)
    thufbin[{},b_List]:=b;thufbin[a_List,{}]:=a;thufbin[a_List]:=a;
    thufbin[{x_,a___},{y_,b___}]:=Switch[Ordering[If[x=!=y,{x,y},{thufbin[{a},{x,b}],thufbin[{x,a},{b}]}]],{1,2},Prepend[thufbin[{a},{y,b}],x],{2,1},Prepend[thufbin[{x,a},{b}],y]];
    thufbin[a_List,b_List,c__List]:=thufbin[a,thufbin[b,c]];
    priseqs[n_]:=Fold[Select,Tuples[Range[n],n],{Union[#]===Range[First[#]]&,Function[q,Select[Table[List[Take[q,{1,j}],Take[q,{j+1,n}]],{j,1,n-1}],thufbin@@Sort[#]===q&,1]==={}]}];
    Table[Length[priseqs[n]],{n,1,7}] (* Gus Wiseman, Oct 14 2016 *)
  • PARI
    \\ here b(n) is A000670
    b(n)={polcoeff(serlaplace(1/(2-exp(x+O(x*x^n)))), n)}
    a(n)={if(n<1, n==0, sumdiv(n, d, moebius(d)*b(n/d))/n)} \\ Andrew Howroyd, Dec 12 2017

Formula

a(n) = (1/n)* Sum_{d|n} mu(d)*A000670(n/d) for n > 0, where mu is A008683, the Moebius function. - Edited by Michel Marcus, Mar 30 2016
Let A = Sum_{q in P} Prod_i x_{q_i} = Sum_y c_y m(y) be the symmetric function whose coefficient of m(y) is equal to the number of permutations of the normal multiset [k]^y that belong to P, where the multiplicity of i in [k]^y is defined to be y_i. Then a(n) is the sum of c_y taken over all integer partitions of n. See example 3. - Gus Wiseman, Oct 14 2016
a(n) = Sum_{d|n} mu(d) * A019536(n/d) for n >= 1. - Petros Hadjicostas, Aug 19 2019

Extensions

More terms from Alois P. Heinz, Jan 23 2015

A007717 Number of symmetric polynomial functions of degree n of a symmetric matrix (of indefinitely large size) under joint row and column permutations. Also number of multigraphs with n edges (allowing loops) on an infinite set of nodes.

Original entry on oeis.org

1, 2, 7, 23, 79, 274, 1003, 3763, 14723, 59663, 250738, 1090608, 4905430, 22777420, 109040012, 537401702, 2723210617, 14170838544, 75639280146, 413692111521, 2316122210804, 13261980807830, 77598959094772, 463626704130058, 2826406013488180, 17569700716557737
Offset: 0

Views

Author

Keywords

Comments

Euler transform of A007719.
Also the number of non-isomorphic multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n}. - Gus Wiseman, Jul 18 2018
Number of distinct n X 2n matrices with integer entries and rows sums 2, up to row and column permutations. - Andrew Howroyd, Sep 06 2018
a(n) is the number of unlabeled loopless multigraphs with n edges rooted at one vertex. - Andrew Howroyd, Nov 22 2020

Examples

			a(2) = 7 (here - denotes an edge, = denotes a pair of parallel edges and o is a loop):
  oo
  o o
  o-
  o -
  =
  --
  - -
From _Gus Wiseman_, Jul 18 2018: (Start)
Non-isomorphic representatives of the a(2) = 7 multiset partitions of {1, 1, 2, 2}:
  (1122),
  (1)(122), (11)(22), (12)(12),
  (1)(1)(22), (1)(2)(12),
  (1)(1)(2)(2).
(End)
From _Gus Wiseman_, Jan 08 2024: (Start)
Non-isomorphic representatives of the a(1) = 1 through a(3) = 7 rooted loopless multigraphs (root shown as singleton):
  {{1}}  {{1},{1,2}}  {{1},{1,2},{1,2}}
         {{1},{2,3}}  {{1},{1,2},{1,3}}
                      {{1},{1,2},{2,3}}
                      {{1},{1,2},{3,4}}
                      {{1},{2,3},{2,3}}
                      {{1},{2,3},{2,4}}
                      {{1},{2,3},{4,5}}
(End)
		

References

  • Huaien Li and David C. Torney, Enumerations of Multigraphs, 2002.

Crossrefs

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t k; s += t]; s!/m];
    Kq[q_, t_, k_] := SeriesCoefficient[1/Product[g = GCD[t, q[[j]]]; (1 - x^(q[[j]]/g))^g, {j, 1, Length[q]}], {x, 0, k}];
    RowSumMats[n_, m_, k_] := Module[{s=0}, Do[s += permcount[q]* SeriesCoefficient[Exp[Sum[Kq[q, t, k]/t x^t, {t, 1, n}]], {x, 0, n}], {q, IntegerPartitions[m]}]; s/m!];
    a[n_] := RowSumMats[n, 2n, 2];
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 25}] (* Jean-François Alcover, Oct 27 2018, after Andrew Howroyd *)
  • PARI
    \\ See A318951 for RowSumMats
    a(n)=RowSumMats(n, 2*n, 2); \\ Andrew Howroyd, Sep 06 2018
    
  • PARI
    \\ See A339065 for G.
    seq(n)={my(A=O(x*x^n)); Vec(G(2*n, x+A, [1]))} \\ Andrew Howroyd, Nov 22 2020

Extensions

More terms from Vladeta Jovovic, Jan 26 2000
a(0)=1 prepended and a(16)-a(25) added by Max Alekseyev, Jun 21 2011

A339846 Number of even-length factorizations of n into factors > 1.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 3, 0, 2, 0, 2, 1, 1, 0, 4, 1, 1, 1, 2, 0, 3, 0, 3, 1, 1, 1, 5, 0, 1, 1, 4, 0, 3, 0, 2, 2, 1, 0, 6, 1, 2, 1, 2, 0, 4, 1, 4, 1, 1, 0, 6, 0, 1, 2, 6, 1, 3, 0, 2, 1, 3, 0, 8, 0, 1, 2, 2, 1, 3, 0, 6, 3, 1, 0, 6, 1, 1, 1, 4, 0, 6, 1, 2, 1, 1, 1, 10, 0, 2, 2, 5, 0, 3, 0, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Dec 28 2020

Keywords

Examples

			The a(n) factorizations for n = 12, 16, 24, 36, 48, 72, 96, 120:
  2*6  2*8      3*8      4*9      6*8      8*9      2*48         2*60
  3*4  4*4      4*6      6*6      2*24     2*36     3*32         3*40
       2*2*2*2  2*12     2*18     3*16     3*24     4*24         4*30
                2*2*2*3  3*12     4*12     4*18     6*16         5*24
                         2*2*3*3  2*2*2*6  6*12     8*12         6*20
                                  2*2*3*4  2*2*2*9  2*2*3*8      8*15
                                           2*2*3*6  2*2*4*6      10*12
                                           2*3*3*4  2*3*4*4      2*2*5*6
                                                    2*2*2*12     2*3*4*5
                                                    2*2*2*2*2*3  2*2*2*15
                                                                 2*2*3*10
		

Crossrefs

The case of set partitions (or n squarefree) is A024430.
The case of partitions (or prime powers) is A027187.
The ordered version is A174725, odd: A174726.
The odd-length factorizations are counted by A339890.
A001055 counts factorizations, with strict case A045778.
A001358 lists semiprimes, with squarefree case A006881.
A027187 counts partitions of even length, ranked by A028260.
A058696 counts partitions of even numbers, ranked by A300061.
A316439 counts factorizations by product and length.
A340102 counts odd-length factorizations into odd factors.

Programs

  • Maple
    g:= proc(n, k, t) option remember; `if`(n>k, 0, t)+
          `if`(isprime(n), 0, add(`if`(d>k, 0, g(n/d, d, 1-t)),
              d=numtheory[divisors](n) minus {1, n}))
        end:
    a:= n-> `if`(n=1, 1, g(n$2, 0)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Dec 30 2020
  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],EvenQ@Length[#]&]],{n,100}]
  • PARI
    A339846(n, m=n, e=1) = if(1==n, e, sumdiv(n, d, if((d>1)&&(d<=m), A339846(n/d, d, 1-e)))); \\ Antti Karttunen, Oct 22 2023

Formula

a(n) + A339890(n) = A001055(n).

Extensions

Data section extended up to a(105) by Antti Karttunen, Oct 22 2023

A302569 Numbers that are either prime or whose prime indices are pairwise coprime. Heinz numbers of integer partitions with pairwise coprime parts.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 22, 23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 40, 41, 43, 44, 46, 47, 48, 51, 52, 53, 55, 56, 58, 59, 60, 61, 62, 64, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 79, 80, 82, 83, 85, 86, 88, 89
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.
The Heinz number of an integer partition (y_1,..,y_k) is prime(y_1)*..*prime(y_k).

Examples

			Entry A302242 describes a correspondence between positive integers and multiset multisystems. In this case it gives the following sequence of multiset systems.
02: {{}}
03: {{1}}
04: {{},{}}
05: {{2}}
06: {{},{1}}
07: {{1,1}}
08: {{},{},{}}
10: {{},{2}}
11: {{3}}
12: {{},{},{1}}
13: {{1,2}}
14: {{},{1,1}}
15: {{1},{2}}
16: {{},{},{},{}}
17: {{4}}
19: {{1,1,1}}
20: {{},{},{2}}
22: {{},{3}}
23: {{2,2}}
24: {{},{},{},{1}}
26: {{},{1,2}}
28: {{},{},{1,1}}
29: {{1,3}}
30: {{},{1},{2}}
31: {{5}}
32: {{},{},{},{},{}}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[200],Or[PrimeQ[#],CoprimeQ@@primeMS[#]]&]
  • PARI
    is(n)=if(n<9, return(n>1)); n>>=valuation(n,2); if(n<9, return(1)); my(f=factor(n)); if(vecmax(f[,2])>1, return(0)); if(#f~==1, return(1)); my(v=apply(primepi, f[,1]),P=vecprod(v)); for(i=1,#v, if(gcd(v[i],P/v[i])>1, return(0))); 1 \\ Charles R Greathouse IV, Nov 11 2021

A317533 Regular triangle read rows: T(n,k) = number of non-isomorphic multiset partitions of size n and length k.

Original entry on oeis.org

1, 2, 2, 3, 4, 3, 5, 14, 9, 5, 7, 28, 33, 16, 7, 11, 69, 104, 74, 29, 11, 15, 134, 294, 263, 142, 47, 15, 22, 285, 801, 948, 599, 263, 77, 22, 30, 536, 2081, 3058, 2425, 1214, 453, 118, 30, 42, 1050, 5212, 9769, 9276, 5552, 2322, 761, 181, 42, 56, 1918, 12645, 29538, 34172, 23770, 11545, 4179, 1223, 267, 56
Offset: 1

Views

Author

Gus Wiseman, Jul 30 2018

Keywords

Examples

			Non-isomorphic representatives of the T(3,2) = 4 multiset partitions:
  {{1},{1,1}}
  {{1},{1,2}}
  {{1},{2,2}}
  {{1},{2,3}}
Triangle begins:
    1
    2    2
    3    4    3
    5   14    9    5
    7   28   33   16    7
   11   69  104   74   29   11
   15  134  294  263  142   47   15
		

Crossrefs

Row sums are A007716. First and last columns are both A000041.

Programs

  • Mathematica
    permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    c[p_List, q_List, k_] := SeriesCoefficient[1/Product[(1 - x^LCM[p[[i]], q[[j]]])^GCD[p[[i]], q[[j]]], {j, 1, Length[q]}, {i, 1, Length[p]}], {x, 0, k}];
    M[m_, n_, k_] := Module[{s = 0}, Do[Do[s += permcount[p]*permcount[q]*c[p, q, k], {q, IntegerPartitions[n]}], {p, IntegerPartitions[m]}]; s/(m!*n!)];
    T[n_, k_] := M[k, n, n] - M[k - 1, n, n];
    Table[T[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 08 2020, after Andrew Howroyd *)
  • PARI
    \\ See A318795 for definition of M.
    T(n,k)={M(k, n, n) - M(k-1, n, n)}
    for(n=1, 10, for(k=1, n, print1(T(n,k),", "));print) \\ Andrew Howroyd, Dec 28 2019
    
  • PARI
    \\ Faster version.
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, n)={1/prod(j=1, #q, (1-x^lcm(t, q[j]) + O(x*x^n))^gcd(t, q[j]))}
    G(m,n)={my(s=0); forpart(q=m, s+=permcount(q)*exp(sum(t=1, n, (K(q, t, n)-1)/t) + O(x*x^n))); s/m!}
    A(n,m=n)={my(p=sum(k=0, m, G(k,n)*y^k)*(1-y)); matrix(n, m, n, k, polcoef(polcoef(p, n, x), k, y))}
    { my(T=A(10)); for(n=1, #T, print(T[n,1..n])) } \\ Andrew Howroyd, Aug 30 2020

Extensions

Terms a(29) and beyond from Andrew Howroyd, Dec 28 2019

A367903 Number of sets of nonempty subsets of {1..n} contradicting a strict version of the axiom of choice.

Original entry on oeis.org

0, 0, 1, 67, 30997, 2147296425, 9223372036784737528, 170141183460469231731687303625772608225, 57896044618658097711785492504343953926634992332820282019728791606173188627779
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2023

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The a(2) = 1 set-system is {{1},{2},{1,2}}.
The a(3) = 67 set-systems have following 21 non-isomorphic representatives:
  {{1},{2},{1,2}}
  {{1},{2},{3},{1,2}}
  {{1},{2},{3},{1,2,3}}
  {{1},{2},{1,2},{1,3}}
  {{1},{2},{1,2},{1,2,3}}
  {{1},{2},{1,3},{2,3}}
  {{1},{2},{1,3},{1,2,3}}
  {{1},{1,2},{1,3},{2,3}}
  {{1},{1,2},{1,3},{1,2,3}}
  {{1},{1,2},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3},{1,2,3}}
  {{1},{2},{3},{1,2},{1,3}}
  {{1},{2},{3},{1,2},{1,2,3}}
  {{1},{2},{1,2},{1,3},{2,3}}
  {{1},{2},{1,2},{1,3},{1,2,3}}
  {{1},{2},{1,3},{2,3},{1,2,3}}
  {{1},{1,2},{1,3},{2,3},{1,2,3}}
  {{1},{2},{3},{1,2},{1,3},{2,3}}
  {{1},{2},{3},{1,2},{1,3},{1,2,3}}
  {{1},{2},{1,2},{1,3},{2,3},{1,2,3}}
  {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Multisets of multisets of this type are ranked by A355529.
The version without singletons is A367769.
The version for simple graphs is A367867, covering A367868.
The version allowing empty edges is A367901.
The complement is A367902, without singletons A367770, ranks A367906.
For a unique choice (instead of none) we have A367904, ranks A367908.
These set-systems have ranks A367907.
An unlabeled version is A368094, for multiset partitions A368097.
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Rest[Subsets[Range[n]]]], Select[Tuples[#],UnsameQ@@#&]=={}&]],{n,0,3}]

Formula

a(n) + A367904(n) + A367772(n) = A058891(n+1) = 2^(2^n-1).

Extensions

a(5)-a(8) from Christian Sievers, Jul 26 2024

A318360 Number of set multipartitions (multisets of sets) of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 5, 3, 2, 1, 6, 1, 2, 3, 15, 1, 9, 1, 6, 3, 2, 1, 21, 4, 2, 16, 6, 1, 10, 1, 52, 3, 2, 4, 35, 1, 2, 3, 22, 1, 10, 1, 6, 19, 2, 1, 83, 5, 13, 3, 6, 1, 66, 4, 22, 3, 2, 1, 41, 1, 2, 20, 203, 4, 10, 1, 6, 3, 14, 1, 153, 1, 2, 26, 6, 5, 10, 1
Offset: 1

Views

Author

Gus Wiseman, Aug 24 2018

Keywords

Examples

			The a(12) = 6 set multipartitions of {1,1,2,3}:
  {{1},{1,2,3}}
  {{1,2},{1,3}}
  {{1},{1},{2,3}}
  {{1},{2},{1,3}}
  {{1},{3},{1,2}}
  {{1},{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    sqfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ]}]];
    Table[Length[sqfacs[Times@@Prime/@nrmptn[n]]],{n,80}]
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    sig(n)={my(f=factor(n)); concat(vector(#f~, i, vector(f[i,2], j, primepi(f[i,1]))))}
    count(sig)={my(n=vecsum(sig), s=0); forpart(p=n, my(q=prod(i=1, #p, 1 + x^p[i] + O(x*x^n))); s+=prod(i=1, #sig, polcoef(q,sig[i]))*permcount(p)); s/n!}
    a(n)={if(n==1, 1, my(s=sig(n)); if(#s<=2, if(#s==1, 1, min(s[1],s[2])+1), count(sig(n))))} \\ Andrew Howroyd, Dec 10 2018

Formula

a(n) = A050320(A181821(n)).
From Andrew Howroyd, Dec 10 2018:(Start)
a(p) = 1 for prime(p).
a(prime(i)*prime(j)) = min(i,j) + 1.
a(prime(n)^k) = A188392(n,k). (End)
Previous Showing 11-20 of 466 results. Next