A302548
Expansion of e.g.f. -log(1 + log(1 - x))/(1 + log(1 - x)).
Original entry on oeis.org
0, 1, 4, 22, 155, 1333, 13541, 158688, 2107682, 31291894, 513590170, 9234669420, 180534475832, 3812852144788, 86517295628188, 2099170738243328, 54233876338638192, 1486517654443664016, 43084555863325589232, 1316588795487600071904, 42306543064537291007424, 1426115146736949130634400
Offset: 0
E.g.f.: A(x) = x + 4*x^2/2! + 22*x^3/3! + 155*x^4/4! + 1333*x^5/5! + 13541*x^6/6! + ...
-
H:= proc(n) H(n):= 1/n +`if`(n=1, 0, H(n-1)) end:
a:= n-> add(abs(Stirling1(n, k))*H(k)*k!, k=1..n):
seq(a(n), n=0..23); # Alois P. Heinz, Jun 21 2018
-
nmax = 21; CoefficientList[Series[-Log[1 + Log[1 - x]]/(1 + Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Abs[StirlingS1[n, k]] HarmonicNumber[k] k!, {k, 0, n}], {n, 0, 21}]
A302914
Determinant of n X n matrix whose main diagonal consists of the first n 10-gonal numbers and all other elements are 1's.
Original entry on oeis.org
1, 9, 234, 11934, 1002456, 125307000, 21803418000, 5036589558000, 1490830509168000, 550116457882992000, 247552406047346400000, 133430746859519709600000, 84861955002654535305600000, 62882708656967010661449600000, 53701833193049827104877958400000
Offset: 1
The matrix begins:
1 1 1 1 1 1 1 ...
1 10 1 1 1 1 1 ...
1 1 27 1 1 1 1 ...
1 1 1 52 1 1 1 ...
1 1 1 1 85 1 1 ...
1 1 1 1 1 126 1 ...
1 1 1 1 1 1 175 ...
Cf. Determinant of n X n matrix whose main diagonal consists of the first n k-gonal numbers and all other elements are 1's:
A000142 (k=2),
A067550 (k=3),
A010791 (k=4, with offset 1),
A302909 (k=5),
A302910 (k=6),
A302911 (k=7),
A302912 (k=8),
A302913 (k=9), this sequence (k=10).
Cf.
A007840 (permanent instead of determinant, for k=2).
-
d:=(i,j)->`if`(i<>j,1,i*(4*i-3)):
seq(LinearAlgebra[Determinant](Matrix(n,d)),n=1..16);
-
nmax = 20; Table[Det[Table[If[i == j, i*(4*i-3), 1], {i, 1, k}, {j, 1, k}]], {k, 1, nmax}] (* Vaclav Kotesovec, Apr 16 2018 *)
RecurrenceTable[{a[n+1] == a[n] * n*(4*n + 5), a[1] == 1}, a, {n, 1, 20}] (* Vaclav Kotesovec, Apr 16 2018 *)
Table[FullSimplify[4^(n+1) * Gamma[n] * Gamma[n + 5/4] / (5*Gamma[1/4])], {n, 1, 15}] (* Vaclav Kotesovec, Apr 16 2018 *)
-
a(n) = matdet(matrix(n, n, i, j, if (i!=j, 1, i*(4*i-3)))); \\ Michel Marcus, Apr 16 2018
A320079
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 + k*log(1 - x)).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 10, 14, 0, 1, 4, 21, 76, 88, 0, 1, 5, 36, 222, 772, 694, 0, 1, 6, 55, 488, 3132, 9808, 6578, 0, 1, 7, 78, 910, 8824, 55242, 149552, 72792, 0, 1, 8, 105, 1524, 20080, 199456, 1169262, 2660544, 920904, 0, 1, 9, 136, 2366, 39708, 553870, 5410208, 28873800, 54093696, 13109088, 0
Offset: 0
E.g.f. of column k: A_k(x) = 1 + k*x/1! + k*(2*k + 1)*x^2/2! + 2*k*(3*k^2 + 3*k + 1)*x^3/3! + 2*k*(12*k^3 + 18*k^2 + 11*k + 3)*x^4/4! + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 3, 10, 21, 36, 55, ...
0, 14, 76, 222, 488, 910, ...
0, 88, 772, 3132, 8824, 20080, ...
0, 694, 9808, 55242, 199456, 553870, ...
-
Table[Function[k, n! SeriesCoefficient[1/(1 + k Log[1 - x]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten
A320502
a(n) = Sum_{k=0..n} (k!)^2 * abs(Stirling1(n,k)).
Original entry on oeis.org
1, 1, 5, 50, 842, 21644, 792676, 39297600, 2536525008, 206794669104, 20785423425264, 2525457805492896, 364910211591903072, 61847041340997089280, 12151693924459271926272, 2739901558132307387349504, 702704348810821821056454144, 203409730893592265642619623424
Offset: 0
-
[(&+[Abs(StirlingFirst(n,k))*(Factorial(k))^2: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Oct 14 2018
-
Table[Sum[Abs[StirlingS1[n, k]]*k!^2, {k, 0, n}], {n, 0, 20}]
-
a(n) = sum(k=0, n, k!^2*abs(stirling(n, k, 1))); \\ Michel Marcus, Oct 14 2018
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, k!*(-log(1-x))^k))) \\ Seiichi Manyama, Apr 22 2022
A336258
a(0) = 1; a(n) = (n!)^2 * Sum_{k=0..n-1} a(k) / (k! * (n-k))^2.
Original entry on oeis.org
1, 1, 5, 58, 1208, 39476, 1861372, 119587224, 10040970816, 1067383279872, 140110136642304, 22256626639796352, 4207858001708629248, 933704296260740939520, 240293228328619963492608, 70992050129486593239246336, 23863916105454465092261412864
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-i)/i^2, i=1..n))
end:
a:= n-> n!^2*b(n):
seq(a(n), n=0..16); # Alois P. Heinz, Jan 04 2024
-
a[0] = 1; a[n_] := a[n] = (n!)^2 Sum[a[k]/(k! (n - k))^2, {k, 0, n - 1}]; Table[a[n], {n, 0, 16}]
nmax = 16; CoefficientList[Series[1/(1 - PolyLog[2, x]), {x, 0, nmax}], x] Range[0, nmax]!^2
A351136
a(n) = Sum_{k=0..n} (-1)^(n-k) * k! * k^(2*n) * Stirling1(n,k).
Original entry on oeis.org
1, 1, 33, 4760, 1814698, 1436035954, 2041681617638, 4736066140912728, 16729538152432476024, 85437808930634601070944, 605822464949212598847700512, 5774077466357788471179323050704, 72030066703292325305595937373723040
Offset: 0
-
a[0] = 1; a[n_] := Sum[(-1)^(n - k) * k! * k^(2*n) * StirlingS1[n, k], {k, 1, n}]; Array[a, 13, 0] (* Amiram Eldar, Feb 02 2022 *)
-
a(n) = sum(k=0, n, (-1)^(n-k)*k!*k^(2*n)*stirling(n, k, 1));
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-log(1-k^2*x))^k)))
A352069
Expansion of e.g.f. 1 / (1 + log(1 - 3*x) / 3).
Original entry on oeis.org
1, 1, 5, 42, 492, 7374, 134478, 2887128, 71281656, 1988802720, 61860849552, 2121993490176, 79566300371952, 3237181141173264, 142019158472311248, 6682603650677875584, 335698708873243355136, 17930674324049810882688, 1014685181110897126616448, 60641642160287342580586752
Offset: 0
-
nmax = 19; CoefficientList[Series[1/(1 + Log[1 - 3 x]/3), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[StirlingS1[n, k] k! (-3)^(n - k), {k, 0, n}], {n, 0, 19}]
-
my(x='x+O('x^25)); Vec(serlaplace(1/(1+log(1-3*x)/3))) \\ Michel Marcus, Mar 02 2022
A354123
Expansion of e.g.f. 1/(1 + log(1 - x))^4.
Original entry on oeis.org
1, 4, 24, 188, 1804, 20416, 265640, 3901320, 63776280, 1147796160, 22540858080, 479500074720, 10980929163360, 269298981833280, 7040446188020160, 195439047629422080, 5740498087530831360, 177855276360034736640, 5796391124741936993280
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+log(1-x))^4))
-
a(n) = sum(k=0, n, (k+3)!*abs(stirling(n, k, 1)))/6;
A355086
E.g.f. A(x) satisfies A(x) = 1 - log(1-x) * A(2*x).
Original entry on oeis.org
1, 1, 5, 68, 2318, 191364, 37322176, 16851654336, 17323677619888, 39991811695203552, 204958165376127918144, 2309776412016044230960128, 56778926016923229432156258048, 3023733345610004146919028796718592
Offset: 0
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, 2^(i-j)*(j-1)!*binomial(i, j)*v[i-j+1])); v;
A052860
A simple grammar: rooted sequences of cycles.
Original entry on oeis.org
0, 1, 2, 9, 56, 440, 4164, 46046, 582336, 8288136, 131090880, 2280970032, 43298796672, 890441326320, 19720847692896, 467964024901200, 11844861486802944, 318549937907204352, 9070876711252816128, 272648086802525651328, 8626452694650322744320
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{C=Cycle(Z),B=Sequence(C),S=Prod(Z,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
nn=20;a=Log[1/(1-x)];Range[0,nn]!CoefficientList[Series[x/(1-a) ,{x,0,nn}],x] (* Geoffrey Critzer, Nov 06 2012 *)
-
a(n)=n!*polcoeff(x/(1+log(1-x +x*O(x^n))),n) \\ Paul D. Hanna, Jul 19 2006
Comments