cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 104 results. Next

A302548 Expansion of e.g.f. -log(1 + log(1 - x))/(1 + log(1 - x)).

Original entry on oeis.org

0, 1, 4, 22, 155, 1333, 13541, 158688, 2107682, 31291894, 513590170, 9234669420, 180534475832, 3812852144788, 86517295628188, 2099170738243328, 54233876338638192, 1486517654443664016, 43084555863325589232, 1316588795487600071904, 42306543064537291007424, 1426115146736949130634400
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 20 2018

Keywords

Examples

			E.g.f.: A(x) = x + 4*x^2/2! + 22*x^3/3! + 155*x^4/4! + 1333*x^5/5! + 13541*x^6/6! + ...
		

Crossrefs

Programs

  • Maple
    H:= proc(n) H(n):= 1/n +`if`(n=1, 0, H(n-1)) end:
    a:= n-> add(abs(Stirling1(n, k))*H(k)*k!, k=1..n):
    seq(a(n), n=0..23);  # Alois P. Heinz, Jun 21 2018
  • Mathematica
    nmax = 21; CoefficientList[Series[-Log[1 + Log[1 - x]]/(1 + Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[Abs[StirlingS1[n, k]] HarmonicNumber[k] k!, {k, 0, n}], {n, 0, 21}]

Formula

a(n) = Sum_{k=1..n} |Stirling1(n,k)|*H(k)*k!, where H(k) is the k-th harmonic number.
a(n) ~ sqrt(2*Pi) * log(n) * n^(n + 1/2) / (exp(1)-1)^(n+1). - Vaclav Kotesovec, Jun 23 2018

A302914 Determinant of n X n matrix whose main diagonal consists of the first n 10-gonal numbers and all other elements are 1's.

Original entry on oeis.org

1, 9, 234, 11934, 1002456, 125307000, 21803418000, 5036589558000, 1490830509168000, 550116457882992000, 247552406047346400000, 133430746859519709600000, 84861955002654535305600000, 62882708656967010661449600000, 53701833193049827104877958400000
Offset: 1

Views

Author

Muniru A Asiru, Apr 15 2018

Keywords

Comments

From Vaclav Kotesovec, Apr 16 2018: (Start)
In general, for k > 2, these determinants for k-gonal numbers satisfies:
a(n,k) = ((k-2)/2)^(n-1) * Gamma(n) * Gamma(n + k/(k-2)) / Gamma(1 + k/(k-2)).
a(n,k) ~ 4*Pi * (k/2 - 1)^n * n^(2*n + 2/(k-2)) / (k * Gamma(k/(k-2)) * exp(2*n)).
a(n+1,k) = a(n,k) * n*((k-2)*n + k)/2.
(End)

Examples

			The matrix begins:
  1   1   1   1   1   1   1 ...
  1  10   1   1   1   1   1 ...
  1   1  27   1   1   1   1 ...
  1   1   1  52   1   1   1 ...
  1   1   1   1  85   1   1 ...
  1   1   1   1   1 126   1 ...
  1   1   1   1   1   1 175 ...
		

Crossrefs

Cf. A001107.
Cf. Determinant of n X n matrix whose main diagonal consists of the first n k-gonal numbers and all other elements are 1's: A000142 (k=2), A067550 (k=3), A010791 (k=4, with offset 1), A302909 (k=5), A302910 (k=6), A302911 (k=7), A302912 (k=8), A302913 (k=9), this sequence (k=10).
Cf. A007840 (permanent instead of determinant, for k=2).

Programs

  • Maple
    d:=(i,j)->`if`(i<>j,1,i*(4*i-3)):
    seq(LinearAlgebra[Determinant](Matrix(n,d)),n=1..16);
  • Mathematica
    nmax = 20; Table[Det[Table[If[i == j, i*(4*i-3), 1], {i, 1, k}, {j, 1, k}]], {k, 1, nmax}] (* Vaclav Kotesovec, Apr 16 2018 *)
    RecurrenceTable[{a[n+1] == a[n] * n*(4*n + 5), a[1] == 1}, a, {n, 1, 20}] (* Vaclav Kotesovec, Apr 16 2018 *)
    Table[FullSimplify[4^(n+1) * Gamma[n] * Gamma[n + 5/4] / (5*Gamma[1/4])], {n, 1, 15}] (* Vaclav Kotesovec, Apr 16 2018 *)
  • PARI
    a(n) = matdet(matrix(n, n, i, j, if (i!=j, 1, i*(4*i-3)))); \\ Michel Marcus, Apr 16 2018

Formula

From Vaclav Kotesovec, Apr 16 2018: (Start)
a(n) = 4^(n+1) * Gamma(n) * Gamma(n + 5/4) / (5*Gamma(1/4)).
a(n) ~ Pi * 2^(2*n + 3) * n^(2*n + 1/4) / (5 * Gamma(1/4) * exp(2*n)).
a(n+1) = a(n) * n*(4*n + 5).
(End)

A320079 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 + k*log(1 - x)).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 10, 14, 0, 1, 4, 21, 76, 88, 0, 1, 5, 36, 222, 772, 694, 0, 1, 6, 55, 488, 3132, 9808, 6578, 0, 1, 7, 78, 910, 8824, 55242, 149552, 72792, 0, 1, 8, 105, 1524, 20080, 199456, 1169262, 2660544, 920904, 0, 1, 9, 136, 2366, 39708, 553870, 5410208, 28873800, 54093696, 13109088, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 05 2018

Keywords

Examples

			E.g.f. of column k: A_k(x) = 1 + k*x/1! + k*(2*k + 1)*x^2/2! + 2*k*(3*k^2 + 3*k + 1)*x^3/3! + 2*k*(12*k^3 + 18*k^2 + 11*k + 3)*x^4/4! + ...
Square array begins:
  1,    1,     1,      1,       1,       1,  ...
  0,    1,     2,      3,       4,       5,  ...
  0,    3,    10,     21,      36,      55,  ...
  0,   14,    76,    222,     488,     910,  ...
  0,   88,   772,   3132,    8824,   20080,  ...
  0,  694,  9808,  55242,  199456,  553870,  ...
		

Crossrefs

Columns k=0..5 give A000007, A007840, A088500, A354263, A354264, A365588.
Main diagonal gives A317171.

Programs

  • Mathematica
    Table[Function[k, n! SeriesCoefficient[1/(1 + k Log[1 - x]), {x, 0, n}]][j - n], {j, 0, 10}, {n, 0, j}] // Flatten

Formula

E.g.f. of column k: 1/(1 + k*log(1 - x)).
A(n,k) = Sum_{j=0..n} |Stirling1(n,j)|*j!*k^j.
A(0,k) = 1; A(n,k) = k * Sum_{j=1..n} (j-1)! * binomial(n,j) * A(n-j,k). - Seiichi Manyama, May 22 2022

A320502 a(n) = Sum_{k=0..n} (k!)^2 * abs(Stirling1(n,k)).

Original entry on oeis.org

1, 1, 5, 50, 842, 21644, 792676, 39297600, 2536525008, 206794669104, 20785423425264, 2525457805492896, 364910211591903072, 61847041340997089280, 12151693924459271926272, 2739901558132307387349504, 702704348810821821056454144, 203409730893592265642619623424
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 13 2018

Keywords

Crossrefs

Programs

  • Magma
    [(&+[Abs(StirlingFirst(n,k))*(Factorial(k))^2: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Oct 14 2018
  • Mathematica
    Table[Sum[Abs[StirlingS1[n, k]]*k!^2, {k, 0, n}], {n, 0, 20}]
  • PARI
    a(n) = sum(k=0, n, k!^2*abs(stirling(n, k, 1))); \\ Michel Marcus, Oct 14 2018
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, k!*(-log(1-x))^k))) \\ Seiichi Manyama, Apr 22 2022
    

Formula

a(n) ~ exp(1/2) * (n!)^2.
E.g.f.: Sum_{k>=0} k! * (-log(1-x))^k. - Seiichi Manyama, Apr 22 2022

A336258 a(0) = 1; a(n) = (n!)^2 * Sum_{k=0..n-1} a(k) / (k! * (n-k))^2.

Original entry on oeis.org

1, 1, 5, 58, 1208, 39476, 1861372, 119587224, 10040970816, 1067383279872, 140110136642304, 22256626639796352, 4207858001708629248, 933704296260740939520, 240293228328619963492608, 70992050129486593239246336, 23863916105454465092261412864
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 15 2020

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-i)/i^2, i=1..n))
        end:
    a:= n-> n!^2*b(n):
    seq(a(n), n=0..16);  # Alois P. Heinz, Jan 04 2024
  • Mathematica
    a[0] = 1; a[n_] := a[n] = (n!)^2 Sum[a[k]/(k! (n - k))^2, {k, 0, n - 1}]; Table[a[n], {n, 0, 16}]
    nmax = 16; CoefficientList[Series[1/(1 - PolyLog[2, x]), {x, 0, nmax}], x] Range[0, nmax]!^2

Formula

a(n) = (n!)^2 * [x^n] 1 / (1 - polylog(2,x)).
a(n) ~ (n!)^2 / (-log(1-r) * r^n), where r = 0.76154294453204558806805187241... is the root of the equation polylog(2,r) = 1. - Vaclav Kotesovec, Jul 15 2020

A351136 a(n) = Sum_{k=0..n} (-1)^(n-k) * k! * k^(2*n) * Stirling1(n,k).

Original entry on oeis.org

1, 1, 33, 4760, 1814698, 1436035954, 2041681617638, 4736066140912728, 16729538152432476024, 85437808930634601070944, 605822464949212598847700512, 5774077466357788471179323050704, 72030066703292325305595937373723040
Offset: 0

Views

Author

Seiichi Manyama, Feb 02 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[(-1)^(n - k) * k! * k^(2*n) * StirlingS1[n, k], {k, 1, n}]; Array[a, 13, 0] (* Amiram Eldar, Feb 02 2022 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*k!*k^(2*n)*stirling(n, k, 1));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (-log(1-k^2*x))^k)))

Formula

E.g.f.: Sum_{k>=0} (-log(1 - k^2*x))^k.
a(n) ~ c * r^(2*n) * (1 + r*exp(2/r))^n * n^(3*n + 1/2) / exp(3*n), where r = 0.9414380538633895499299457441124149470954491698433... is the real root of the equation LambertW(-1, -r*exp(-r)) = -r - exp(-2/r) and c = 2.22047212763474863127102273073825610210704559048894... - Vaclav Kotesovec, Feb 03 2022

A352069 Expansion of e.g.f. 1 / (1 + log(1 - 3*x) / 3).

Original entry on oeis.org

1, 1, 5, 42, 492, 7374, 134478, 2887128, 71281656, 1988802720, 61860849552, 2121993490176, 79566300371952, 3237181141173264, 142019158472311248, 6682603650677875584, 335698708873243355136, 17930674324049810882688, 1014685181110897126616448, 60641642160287342580586752
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 02 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 19; CoefficientList[Series[1/(1 + Log[1 - 3 x]/3), {x, 0, nmax}], x] Range[0, nmax]!
    Table[Sum[StirlingS1[n, k] k! (-3)^(n - k), {k, 0, n}], {n, 0, 19}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1+log(1-3*x)/3))) \\ Michel Marcus, Mar 02 2022

Formula

a(n) = Sum_{k=0..n} Stirling1(n,k) * k! * (-3)^(n-k).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * (k-1)! * 3^(k-1) * a(n-k).
a(n) ~ n! * 3^(n+1) * exp(3*n) / (exp(3) - 1)^(n+1). - Vaclav Kotesovec, Mar 03 2022

A354123 Expansion of e.g.f. 1/(1 + log(1 - x))^4.

Original entry on oeis.org

1, 4, 24, 188, 1804, 20416, 265640, 3901320, 63776280, 1147796160, 22540858080, 479500074720, 10980929163360, 269298981833280, 7040446188020160, 195439047629422080, 5740498087530831360, 177855276360034736640, 5796391124741936993280
Offset: 0

Views

Author

Seiichi Manyama, May 17 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+log(1-x))^4))
    
  • PARI
    a(n) = sum(k=0, n, (k+3)!*abs(stirling(n, k, 1)))/6;

Formula

a(n) = (1/6) * Sum_{k=0..n} (k + 3)! * |Stirling1(n,k)|.
a(n) ~ sqrt(Pi/2) * n^(n + 7/2) / (3 * (exp(1) - 1)^(n+4)). - Vaclav Kotesovec, Jun 04 2022
a(0) = 1; a(n) = Sum_{k=1..n} (3*k/n + 1) * (k-1)! * binomial(n,k) * a(n-k). - Seiichi Manyama, Nov 19 2023

A355086 E.g.f. A(x) satisfies A(x) = 1 - log(1-x) * A(2*x).

Original entry on oeis.org

1, 1, 5, 68, 2318, 191364, 37322176, 16851654336, 17323677619888, 39991811695203552, 204958165376127918144, 2309776412016044230960128, 56778926016923229432156258048, 3023733345610004146919028796718592
Offset: 0

Views

Author

Seiichi Manyama, Jun 18 2022

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, 2^(i-j)*(j-1)!*binomial(i, j)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..n} 2^(n-k) * (k-1)! * binomial(n,k) * a(n-k).

A052860 A simple grammar: rooted sequences of cycles.

Original entry on oeis.org

0, 1, 2, 9, 56, 440, 4164, 46046, 582336, 8288136, 131090880, 2280970032, 43298796672, 890441326320, 19720847692896, 467964024901200, 11844861486802944, 318549937907204352, 9070876711252816128, 272648086802525651328, 8626452694650322744320
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Note that here the root is not allowed to be part of the sequence of cycles. We select a root and then form sequences from the cycles in the permutations of the remaining n-1 elements. Cf. A218817. - Geoffrey Critzer, Nov 06 2012

Crossrefs

Cf. A007840.

Programs

  • Maple
    spec := [S,{C=Cycle(Z),B=Sequence(C),S=Prod(Z,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    nn=20;a=Log[1/(1-x)];Range[0,nn]!CoefficientList[Series[x/(1-a) ,{x,0,nn}],x]  (* Geoffrey Critzer, Nov 06 2012 *)
  • PARI
    a(n)=n!*polcoeff(x/(1+log(1-x +x*O(x^n))),n) \\ Paul D. Hanna, Jul 19 2006

Formula

E.g.f.: -1/(-1+log(-1/(-1+x)))*x.
a(n) = n*A007840(n-1). a(n) = n!*Sum_{k=0..n-1} a(k)/k!/(n-k) for n>=1 with a(0)=0. - Paul D. Hanna, Jul 19 2006
a(n) ~ n! * exp(n-1) / (exp(1)-1)^n. - Vaclav Kotesovec, Mar 16 2014
Previous Showing 31-40 of 104 results. Next