cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 117 results. Next

A089505 Triangle of signed numbers used for the computation of the column sequences of triangle A089504.

Original entry on oeis.org

1, -1, 4, 1, -24, 50, -1, 114, -950, 1350, 31, -15504, 400520, -1897200, 2052855, -9269, 19612560, -1431859000, 17333030000, -56265334125, 49236404224, 342953, -3011508588, 594221485000, -16634292228125, 123422029355625, -302409994743808, 222337901418633, -9945637
Offset: 1

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

Comments

A089504(n+m,m)= sum(a(m,p)*((p+2)*(p+1)*p)^n,p=1..m)/D(m) with D(m) := A089506(m); m=1,2,..., n>=0.

Examples

			[1]; [ -1,4]; [1,-24,50]; [ -1,114,-950,1350]; ...
a(3,2)= -24 = 27*(-1)*((4*3*2)^2)/((4*3*2-3*2*1)*(5*4*3-4*3*2)).
A089504(2+3,3) = A089513(2) = 6156 = (1*(3*2*1)^2 - 24*(4*3*2)^2 + 50*(5*4*3)^2)/27.
		

Crossrefs

Companion denominator sequence is A089506.

Programs

  • Mathematica
    b[n_, m_] := (-1)^(n - m)*FactorialPower[m + 2, 3]^(n - 1)/(Product[ FactorialPower[m + 2, 3] - FactorialPower[r + 2, 3], {r, 1, m - 1}] * Product[ FactorialPower[r + 2, 3] - FactorialPower[m + 2, 3], {r, m + 1, n}]); den[n_] := LCM @@ Table[ Denominator[b[n, m]], {m, 1, n}]; a[n_, m_] := den[n]*b[n, m]; Table[a[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Jean-François Alcover, Sep 02 2016 *)

Formula

a(n, m)= D(n)*((-1)^(n-m))*(((m+2)*(m+1)*m)^(n-1))/(product(fallfac(m+2, 3)-fallfac(r+2, 3), r=1..m-1)*product(fallfac(r+2, 3)-fallfac(m+2, 3), r=m+1..n)), with D(n) := A089506(n) and fallfac(n, m) := A008279(n, m) (falling factorials), 1<=m<=n else 0. (Replace in the denominator the first product by 1 if m=1 and the second one by 1 if m=n.)
a(n, m)= A089506(n)*((-1)^(n-m))*(fallfac(m+2, 3)^(n-1))*(3*m^2+6*m+2)/((n-m)!*(m-1)!*product(fallfac(m+r+2, 2)-r*m, r=1..n)), n>=m>=1.

A090216 Generalized Stirling2 array S_{5,5}(n,k).

Original entry on oeis.org

1, 120, 600, 600, 200, 25, 1, 14400, 504000, 2664000, 4608000, 3501000, 1350360, 284800, 33800, 2225, 75, 1, 1728000, 371520000, 7629120000, 42762240000, 97388280000, 110386900800, 70137648000, 26920728000, 6548346000, 1039382000
Offset: 1

Views

Author

Wolfdieter Lang, Dec 01 2003

Keywords

Comments

The row length sequence for this array is [1, 6, 11, 16, 21, 26, 31,...]= A016861(n-1), n>=1.
The g.f. for the k-th column, (with leading zeros and k>=5) is G(k,x)= x^ceiling(k/5)*P(k,x)/product(1-fallfac(p,5)*x,p=5..k), with fallfac(n,m) := A008279(n,m) (falling factorials) and P(k,x) := sum(A090222(k,m)*x^m,m=0..kmax(k)), k>=5, with kmax(k) := floor(4*(k-5)/5)= A090223(k-5). For the recurrence of the G(k,x) see A090222.

Examples

			Triangle begins:
  [1];
  [120,600,600,200,25,1];
  [14400,504000,2664000,4608000,3501000,1350360,284800,33800,2225,75,1];
  ...
		

Crossrefs

Cf. A090217, A090209 (row sums), A090218 (alternating row sums).

Programs

  • Mathematica
    fallfac[n_, k_] := Pochhammer[n-k+1, k]; a[n_, k_] := (((-1)^k)/k!)*Sum[((-1)^p)*Binomial[k, p]*fallfac[p, 5]^n, {p, 5, k}]; Table[a[n, k], {n, 1, 5}, {k, 5, 5*n}] // Flatten (* Jean-François Alcover, Mar 05 2014 *)
  • Python
    from sympy import binomial, factorial, ff
    def a(n, k): return sum((-1)**p * binomial(k, p) * ff(p, 5)**n for p in range(5, k+1)) * (-1)**k / factorial(k) # David Radcliffe, Jul 01 2025

Formula

a(n, k) = (((-1)^k)/k!)*sum(((-1)^p)*binomial(k, p)*fallfac(p, 5)^n, p=5..k), with fallfac(p, 5) := A008279(p, 5)=product(p+1-q, q=1..5); 5<= k <= 5*n, n>=1, else 0. From eq.(19) with r=5 of the Blasiak et al. reference.
E^n = Sum_{k=5..5n) a(n,k)*x^k*D^k where D is the operator d/dx, and E the operator x^5d^5/dx^5.

A091746 Generalized Stirling2 array (6,2).

Original entry on oeis.org

1, 30, 12, 1, 2700, 1920, 426, 36, 1, 491400, 478800, 162540, 25344, 1956, 72, 1, 150368400, 181440000, 80451000, 17624880, 2130660, 147840, 5820, 120, 1, 69470200800, 98424849600, 52905560400, 14618016000, 2346624000, 232202880
Offset: 1

Views

Author

Wolfdieter Lang, Feb 27 2004

Keywords

Comments

The sequence of row lengths for this array is [1,3,5,7,9,11,...]=A005408(n-1), n>=1.

References

  • P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
  • M. Schork, On the combinatorics of normal ordering bosonic operators and deforming it, J. Phys. A 36 (2003) 4651-4665.

Crossrefs

Cf. A078740 (3, 2)-Stirling2, A090438 (4, 2)-Stirling2, A091534 (5, 2)-Stirling2.
Cf. A091544 (first column), A091550 (second column divided by 12).
Cf. A091748 (row sums), A091750 (alternating row sums).

Programs

  • Mathematica
    a[n_, k_] := (-1)^k/k! Sum[(-1)^p Binomial[k, p] Product[FactorialPower[p + 4*(j-1), 2], {j, 1, n}], {p, 2, k}]; Table[a[n, k], {n, 1, 8}, {k, 2, 2n} ] // Flatten (* Jean-François Alcover, Sep 01 2016 *)

Formula

a(n, k)=(((-1)^k)/k!)*sum(((-1)^p)*binomial(k, p)*product(fallfac(p+4*(j-1), 2), j=1..n), p=2..k), n>=1, 2<=k<=2*n, else 0. From eq. (12) of the Blasiak et al. reference with r=6, s=2.
Recursion: a(n, k)=sum(binomial(2, p)*fallfac(4*(n-1)+k-p, 2-p)*a(n-1, k-p), p=0..2), n>=2, 2<=k<=2*n, a(1, 2)=1, else 0. Rewritten from eq.(19) of the Schork reference with r=6, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle).

A136572 Triangle read by rows: row n consists of n zeros followed by n!.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 0, 6, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 120, 0, 0, 0, 0, 0, 0, 720, 0, 0, 0, 0, 0, 0, 0, 5040, 0, 0, 0, 0, 0, 0, 0, 0, 40320, 0, 0, 0, 0, 0, 0, 0, 0, 0, 362880, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3628800, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 39916800
Offset: 0

Views

Author

Gary W. Adamson, Jan 07 2008

Keywords

Comments

Examples

			First few rows of the triangle:
  1;
  0, 1;
  0, 0, 2;
  0, 0, 0, 6;
  0, 0, 0, 0, 24;
  0, 0, 0, 0,  0, 120;
  ...
		

Crossrefs

Programs

  • Haskell
    a136572 n k = a136572_tabl !! n !! k
    a136572_row n = a136572_tabl !! n
    a136572_tabl = map fst $ iterate f ([1], 1) where
       f (row, i) = (0 : map (* i) row, i + 1)
    -- Reinhard Zumkeller, Nov 18 2012
  • Mathematica
    Table[PadLeft[{n!},n+1,0],{n,0,20}]//Flatten (* Harvey P. Dale, Oct 22 2016 *)

Formula

Triangle, n zeros followed by n! T(n,k): n! * 0^(n-k), 0 <= k <= n.
As an infinite lower triangular matrix, A000142 (1, 1, 2, 6, 24, 120, ...) in the main diagonal and the rest zeros.

A274760 The multinomial transform of A001818(n) = ((2*n-1)!!)^2.

Original entry on oeis.org

1, 1, 10, 478, 68248, 21809656, 13107532816, 13244650672240, 20818058883902848, 48069880140604832128, 156044927762422185270016, 687740710497308621254625536, 4000181720339888446834235653120, 29991260979682976913756629498334208
Offset: 0

Views

Author

Johannes W. Meijer, Jul 27 2016

Keywords

Comments

The multinomial transform [MNL] transforms an input sequence b(n) into the output sequence a(n). Given the fact that the structure of the a(n) formulas, see the examples, lead to the multinomial coefficients A036039 the MNL transform seems to be an appropriate name for this transform. The multinomial transform is related to the exponential transform, see A274804 and the third formula. For the inverse multinomial transform [IML] see A274844.
To preserve the identity IML[MNL[b(n)]] = b(n) for n >= 0 for a sequence b(n) with offset 0 the shifted sequence b(n-1) with offset 1 has to be used as input for the MNL, otherwise information about b(0) will be lost in transformation.
In the a(n) formulas, see the examples, the multinomial coefficients A036039 appear.
We observe that a(0) = 1 and that this term provides no information about any value of b(n), this notwithstanding we will start the a(n) sequence with a(0) = 1.
The Maple programs can be used to generate the multinomial transform of a sequence. The first program uses the first formula which was found by Paul D. Hanna, see A158876, and Vladimir Kruchinin, see A215915. The second program uses properties of the e.g.f., see the sequences A158876, A213507, A244430 and A274539 and the third formula. The third program uses information about the inverse multinomial transform, see A274844.
Some MNL transform pairs are, n >= 1: A000045(n) and A244430(n-1); A000045(n+1) and A213527(n-1); A000108(n) and A213507(n-1); A000108(n-1) and A243953(n-1); A000142(n) and A158876(n-1); A000203(n) and A053529(n-1); A000110(n) and A274539(n-1); A000041(n) and A215915(n-1); A000035(n-1) and A177145(n-1); A179184(n) and A038205(n-1); A267936(n) and A000266(n-1); A267871(n) and A000090(n-1); A193356(n) and A088009(n-1).

Examples

			Some a(n) formulas, see A036039:
  a(0) = 1
  a(1) = 1*x(1)
  a(2) = 1*x(2) + 1*x(1)^2
  a(3) = 2*x(3) + 3*x(1)*x(2) + 1*x(1)^3
  a(4) = 6*x(4) + 8*x(1)*x(3) + 3*x(2)^2 + 6*x(1)^2*x(2) + 1*x(1)^4
  a(5) = 24*x(5) + 30*x(1)*x(4) + 20*x(2)*x(3) + 20*x(1)^2*x(3) + 15*x(1)*x(2)^2 + 10*x(1)^3*x(2) + 1*x(1)^5
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, 1995, pp. 18-23.

Crossrefs

Programs

  • Maple
    nmax:= 13: b := proc(n): (doublefactorial(2*n-1))^2 end: a:= proc(n) option remember: if n=0 then 1 else add(((n-1)!/(n-k)!) * b(k) * a(n-k), k=1..n) fi: end: seq(a(n), n = 0..nmax); # End first MNL program.
    nmax:=13: b := proc(n): (doublefactorial(2*n-1))^2 end: t1 := exp(add(b(n)*x^n/n, n = 1..nmax+1)): t2 := series(t1, x, nmax+1): a := proc(n): n!*coeff(t2, x, n) end: seq(a(n), n = 0..nmax); # End second MNL program.
    nmax:=13: b := proc(n): (doublefactorial(2*n-1))^2 end: f := series(log(1+add(s(n)*x^n/n!, n=1..nmax)), x, nmax+1): d := proc(n): n*coeff(f, x, n) end: a(0) := 1: a(1) := b(1): s(1) := b(1): for n from 2 to nmax do s(n) := solve(d(n)-b(n), s(n)): a(n):=s(n): od: seq(a(n), n=0..nmax); # End third MNL program.
  • Mathematica
    b[n_] := (2*n - 1)!!^2;
    a[0] = 1; a[n_] := a[n] = Sum[((n-1)!/(n-k)!)*b[k]*a[n-k], {k, 1, n}];
    Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Nov 17 2017 *)

Formula

a(n) = Sum_{k=1..n} ((n-1)!/(n-k)!)*b(k)*a(n-k), n >= 1 and a(0) = 1, with b(n) = A001818(n) = ((2*n-1)!!)^2.
a(n) = n!*P(n), with P(n) = (1/n)*(Sum_{k=0..n-1} b(n-k)*P(k)), n >= 1 and P(0) = 1, with b(n) = A001818(n) = ((2*n-1)!!)^2.
E.g.f.: exp(Sum_{n >= 1} b(n)*x^n/n) with b(n) = A001818(n) = ((2*n-1)!!)^2.
denom(a(n)/2^n) = A001316(n); numer(a(n)/2^n) = [1, 1, 5, 239, 8531, 2726207, ...].

A067176 A triangle of generalized Stirling numbers: sum of consecutive terms in the harmonic sequence multiplied by the product of their denominators.

Original entry on oeis.org

0, 1, 0, 3, 1, 0, 11, 5, 1, 0, 50, 26, 7, 1, 0, 274, 154, 47, 9, 1, 0, 1764, 1044, 342, 74, 11, 1, 0, 13068, 8028, 2754, 638, 107, 13, 1, 0, 109584, 69264, 24552, 5944, 1066, 146, 15, 1, 0, 1026576, 663696, 241128, 60216, 11274, 1650, 191, 17, 1, 0, 10628640
Offset: 0

Views

Author

Henry Bottomley, Jan 09 2002

Keywords

Comments

In the Coupon Collector's Problem with n types of coupon, the expected number of coupons required until there are only k types of coupon uncollected is a(n,k)*k!/(n-1)!.
If n+k is even, then a(n,k) is divisible by (n+k+1). For n>=k and k>= 0, a(n,k) = (n-k)!*H(k+1,n-k), where H(m,n) is a generalized harmonic number, i.e., H(0,n) = 1/n and H(m,n) = Sum_{j=1..n} H(m-1,j). - Leroy Quet, Dec 01 2006
This triangle is the same as triangle A165674, which is generated by the asymptotic expansion of the higher order exponential integral E(x,m=2,n), minus the first right hand column. - Johannes W. Meijer, Oct 16 2009

Examples

			Rows start 0; 1,0; 3,1,0; 11,5,1,0; 50,26,7,1,0; 274,154,47,9,1,0 etc. a(5,2) = 3*4*5*(1/3 + 1/4 + 1/5) = 4*5 + 3*5 + 3*4 = 20 + 15 + 12 = 47.
		

Crossrefs

Programs

  • Mathematica
    T[0, k_] := 1; T[n_, k_] := T[n, k] = Sum[ i*k^(i - 1)*Abs[StirlingS1[n - k, i]], {i, 1, n - k}]; Table[T[n,k], {n,1,10}, {k,1,n}] (* G. C. Greubel, Jan 21 2017 *)

Formula

a(n, k) = (n!/k!)*Sum_{j=k+1..n} 1/j = (A000254(n) - A000254(k)*A008279(n, n-k))/A000142(k) = a(n-1, k)*n + (n-1)!/k! = (a(n, k-1)-n!/k!)/k.
a(n, k) = Sum_{i=1..n-k} i*k^(i-1)*abs(stirling1(n-k, i)). - Vladeta Jovovic, Feb 02 2003

A303489 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals: A(n,k) = n! * [x^n] 1/(1 - k*x)^(n/k).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 8, 60, 1, 1, 10, 105, 840, 1, 1, 12, 162, 1920, 15120, 1, 1, 14, 231, 3640, 45045, 332640, 1, 1, 16, 312, 6144, 104720, 1290240, 8648640, 1, 1, 18, 405, 9576, 208845, 3674160, 43648605, 259459200, 1, 1, 20, 510, 14080, 375000, 8648640, 152152000, 1703116800, 8821612800
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 24 2018

Keywords

Examples

			Square array begins:
      1,      1,       1,       1,       1,       1,  ...
      1,      1,       1,       1,       1,       1,  ...
      6,      8,      10,      12,      14,      16,  ...
     60,    105,     162,     231,     312,     405,  ...
    840,   1920,    3640,    6144,    9576,   14080,  ...
  15120,  45045,  104720,  208845,  375000,  623645,  ...
=========================================================
A(1,1) = 1;
A(2,1) = 2*3 = 6;
A(3,1) = 3*4*5 = 60;
A(4,1) = 4*5*6*7 = 840;
A(5,1) = 5*6*7*8*9 = 15120, etc.
...
A(1,2) = 1;
A(2,2) = 2*4 = 8;
A(3,2) = 3*5*7 = 105;
A(4,2) = 4*6*8*10 = 1920;
A(5,2) = 5*7*9*11*13 = 45045, etc.
...
A(1,3) = 1;
A(2,3) = 2*5 = 10;
A(3,3) = 3*6*9 = 162;
A(4,3) = 4*7*10*13 = 3640;
A(5,3) = 5*8*11*14*17 = 104720, etc.
...
		

Crossrefs

Columns k=1..5 give A000407, A113551, A303486, A303487, A303488.
Main diagonal gives A061711.

Programs

  • Mathematica
    Table[Function[k, n! SeriesCoefficient[1/(1 - k x)^(n/k), {x, 0, n}]][j - n + 1], {j, 0, 9}, {n, 0, j}] // Flatten
    Table[Function[k, Product[k i + n, {i, 0, n - 1}]][j - n + 1], {j, 0, 9}, {n, 0, j}] // Flatten
    Table[Function[k, k^n Pochhammer[n/k, n]][j - n + 1], {j, 0, 9}, {n, 0, j}] // Flatten

Formula

A(n,k) = Product_{j=0..n-1} (k*j + n).

A049410 A triangle of numbers related to triangle A049325.

Original entry on oeis.org

1, 3, 1, 6, 9, 1, 6, 51, 18, 1, 0, 210, 195, 30, 1, 0, 630, 1575, 525, 45, 1, 0, 1260, 10080, 6825, 1155, 63, 1, 0, 1260, 51660, 71505, 21840, 2226, 84, 1, 0, 0, 207900, 623700, 333585, 57456, 3906, 108, 1, 0, 0, 623700, 4573800, 4293135, 1195425, 131670
Offset: 1

Views

Author

Keywords

Comments

a(n,1)= A008279(3,n-1). a(n,m)=: S1(-3; n,m), a member of a sequence of lower triangular Jabotinsky matrices, including S1(1; n,m)= A008275 (signed Stirling first kind), S1(2; n,m)= A008297(n,m) (signed Lah numbers). a(n,m) matrix is inverse to signed matrix ((-1)^(n-m))*A000369(n,m).
The monic row polynomials E(n,x) := sum(a(n,m)*x^m,m=1..n), E(0,x) := 1 are exponential convolution polynomials (see A039692 for the definition and a Knuth reference).
Also the inverse Bell transform of the quadruple factorial numbers Product_{k=0..n-1} (4*k+3) (A008545) adding 1,0,0,0,... as column 0. For the definition of the Bell transform see A264428 and for cross-references A265604. - Peter Luschny, Dec 31 2015

Examples

			Triangle begins:
  {1};
  {3,1};
  {6,9,1};
  {6,51,18,1};
  ...
E.g. row polynomial E(3,x)= 6*x+9*x^2+x^3.
		

Crossrefs

Row sums give A049426.

Programs

  • Mathematica
    rows = 10;
    t = Table[Product[4k+3, {k, 0, n-1}], {n, 0, rows}];
    T[n_, k_] := BellY[n, k, t];
    M = Inverse[Array[T, {rows, rows}]] // Abs;
    A049325 = Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
  • Sage
    # uses[inverse_bell_transform from A265605]
    # Adds a column 1,0,0,0,... at the left side of the triangle.
    multifact_4_3 = lambda n: prod(4*k + 3 for k in (0..n-1))
    inverse_bell_matrix(multifact_4_3, 9) # Peter Luschny, Dec 31 2015

Formula

a(n, m) = n!*A049325(n, m)/(m!*4^(n-m)); a(n, m) = (4*m-n+1)*a(n-1, m) + a(n-1, m-1), n >= m >= 1; a(n, m)=0, n

A072019 Generalized Bell numbers B_{5,2}.

Original entry on oeis.org

1, 31, 2481, 371881, 89281461, 31274052351, 15020526041221, 9461707887414161, 7560380738419084201, 7466459670646734124671, 8925493084998518977531001, 12696331763378714706289411961, 21186586117648690791837844061341, 40976310644118022811682503135528671, 90905327647146969025291153908894514381, 229256189615621846477632508681520371943201
Offset: 1

Author

Karol A. Penson, Jun 05 2002

Keywords

Comments

a(n), n=1,2... can be calculated as n-th moment of a positive function on a positive half-axis. This function depends on three different hypergeometric functions of type 0F4. In Maple notation: a(n)=int( x^n*( 1/216*BesselK(1/3,2/3*sqrt(x))*(36*sqrt(3)*hypergeom([],[1/3, 4/3, 5/3, 2/3],1/243*x)*GAMMA(2/3)+8*3^(1/3)*x^(1/3)*Pi*hypergeom([],[2, 4/3, 5/3, 2/3],1/243*x)+3*3^(1/6)*GAMMA(2/3)^2*x^(2/3)*hypergeom([],[2, 7/3, 4/3, 5/3],1/243*x))/Pi/GAMMA(2/3)/exp(1)/x^(1/2) ), x=0..infinity), n=1,2....
a(2)=2!*LaguerreL(2,3,-1)=31, special value of associated Laguerre polynomial.

Crossrefs

Cf. A072020.

Programs

  • Mathematica
    a[n_] := Sum[ 1/9*(3^n)^2 * Gamma[n + 1/3*k + 1/3] * Gamma[n + 1/3*k + 2/3] / Gamma[4/3 + 1/3*k ] / Gamma[5/3 + 1/3*k]/k!/Exp[1], {k, 0, Infinity}]
    (* Second program: *)
    a[n_] := Sum[Product[FactorialPower[k+3*(j-1), 2], {j, 1, n}]/k!, {k, 2, Infinity}]/E; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 16}] (* Jean-François Alcover, Sep 01 2016 *)

Formula

a(n) = Sum_{k=2..2*n} A091534(n, k) = (Sum_{k>=2} (1/k!)*Product_{j=1..n} fallfac(k+3*(j-1), 2))/exp(1), n>=1. From eq.(9) of the Blasiak et al. reference with r=5, s=2. fallfac(n, m) := A008279(n, m) (falling factorials triangle). a(0) := 1 may be added.
Sum of an infinite series: a(n) = Sum_{k>=0} (1/9 * (3^n)^2 * Gamma(n+k/3+1/3) * Gamma(n+k/3+2/3) / (Gamma(4/3+k/3) * Gamma(5/3+k/3) * k! * exp(1))).

A090215 A generalization of triangles A071951 (Legendre-Stirling) and A089504.

Original entry on oeis.org

1, 24, 1, 576, 144, 1, 13824, 17856, 504, 1, 331776, 2156544, 199296, 1344, 1, 7962624, 259117056, 73903104, 1328256, 3024, 1, 191102976, 31102009344, 26864234496, 1189638144, 6408576, 6048, 1, 4586471424, 3732432224256, 9702226427904, 1026160275456, 11956045824, 24697728, 11088, 1
Offset: 1

Author

Wolfdieter Lang, Dec 01 2003

Keywords

Comments

This triangle underlies the array entry A090214 ((4,4)-generalized Stirling2).

Examples

			[1]; [24,1]; [576,144,1]; [13824,17856,504,1]; ...
		

Crossrefs

Cf. A071951 (Legendre-Stirling, (2, 2) case), A089504 ((3, 3)-case).
The column sequences (without leading zeros) are A009968 (powers of 24), etc.

Programs

  • Mathematica
    max = 10; f[m_] := 1/Product[1-FactorialPower[r+3, 4]*x, {r, 1, m}]; col[m_] := CoefficientList[f[m] + O[x]^(max-m+1), x]; a[n_, m_] := col[m][[n-m+1]]; Table[a[n, m], {n, 1, max}, {m, 1, n}] // Flatten (* Jean-François Alcover, Sep 01 2016 *)

Formula

G.f. for m-th column sequence (without leading zeros and m>=1) is 1/product(1-fallfac(r+3, 4)*x, r=1..m) with fallfac(n, k) := A008279(n, k) (falling factorials).
a(n, m) = sum(A089515(m, p)*fallfac(p, 4)^(n-m), p=1..m)/D(m) if n>=m>=1 else 0; with D(m) := A089516(m).

Extensions

More terms coming from a-file added by Michel Marcus, Feb 08 2023
Previous Showing 41-50 of 117 results. Next