A176022
Triangle T(n, k) = A176013(n, k) + A176013(n, n-k+1), read by rows.
Original entry on oeis.org
-2, 3, 3, -7, -18, -7, 25, 96, 96, 25, -121, -650, -800, -650, -121, 721, 5490, 7500, 7500, 5490, 721, -5041, -53067, -92610, -73500, -92610, -53067, -5041, 40321, 564704, 1328096, 987840, 987840, 1328096, 564704, 40321, -362881, -6532164, -20345472, -18373824, -10668672, -18373824, -20345472, -6532164, -362881
Offset: 1
Triangle begins as:
-2;
3, 3;
-7, -18, -7;
25, 96, 96, 25;
-121, -650, -800, -650, -121;
721, 5490, 7500, 7500, 5490, 721;
-5041, -53067, -92610, -73500, -92610, -53067, -5041;
40321, 564704, 1328096, 987840, 987840, 1328096, 564704, 40321;
-
A176013:= func< n, k | (-1)^n*(Factorial(n)/(k*Factorial(k)))*Binomial(n-1, k-1)*Binomial(n, k-1) >;
[A176013(n, k) + A176013(n, n-k+1) : k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 15 2021
-
(* First program *)
T[n_, m_]:= ((-1)^n*n!/(m*m!))*Binomial[n-1, m-1]*Binomial[n, m-1] + ((-1)^n*n!)/((n-m+1)*(n-m+1)!)*Binomial[n-1, n-m] Binomial[n, n-m];
Table[T[n, m], {n,10}, {m,n}]//Flatten
(* Second program *)
A176013[n_, k_] := (-1)^n*(n!/(k*k!))*Binomial[n-1, k-1]*Binomial[n, k-1];
T[n_, k_]:= A176013[n, k] + A176013[n, n-k+1];
Table[T[n, k], {n, 10}, {k, n}]//Flatten (* G. C. Greubel, Feb 15 2021 *)
-
def A176013(n, k): return (-1)^n*(factorial(n)/(k*factorial(k)))*binomial(n-1, k-1)*binomial(n, k-1)
flatten([[A176013(n, k) + A176013(n, n-k+1) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 15 2021
A317364
Expansion of e.g.f. exp(2*x/(1 + x)).
Original entry on oeis.org
1, 2, 0, -4, 16, -48, 64, 800, -12288, 127232, -1150976, 9266688, -58726400, 68777984, 7510646784, -207794409472, 4241007640576, -77359570944000, 1321952191971328, -21274345818161152, 313768799799607296, -3838962981483839488, 21775623343518515200, 859024717017756205056
Offset: 0
-
[n eq 0 select 1 else (-1)^n*Factorial(n)*Evaluate(LaguerrePolynomial(n, -1), 2): n in [0..25]]; // G. C. Greubel, Feb 23 2021
-
a:= proc(n) option remember; add((-1)^(n-k)*
n!/k!*binomial(n-1, k-1)*2^k, k=0..n)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jul 26 2018
-
nmax = 23; CoefficientList[Series[Exp[2 x/(1 + x)], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 23; CoefficientList[Series[Product[Exp[-2 (-x)^k], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[(-1)^(n-k) Binomial[n-1, k-1] 2^k n!/k!, {k, 0, n}], {n, 0, 23}]
Join[{1}, Table[2 (-1)^(n+1) n! Hypergeometric1F1[1-n, 2, 2], {n, 23}]]
-
a(n) = if (n==0, 1, (-1)^n*n!*pollaguerre(n, -1, 2)); \\ Michel Marcus, Feb 23 2021
-
[1 if n==0 else (-1)^n*factorial(n)*gen_laguerre(n, -1, 2) for n in (0..25)] # G. C. Greubel, Feb 23 2021
A059374
Triangle read by rows, T(n, k) = Sum_{i=0..n} L'(n, n-i) * binomial(i, k), for k = 0..n-1.
Original entry on oeis.org
1, 3, 2, 13, 18, 6, 73, 156, 108, 24, 501, 1460, 1560, 720, 120, 4051, 15030, 21900, 15600, 5400, 720, 37633, 170142, 315630, 306600, 163800, 45360, 5040, 394353, 2107448, 4763976, 5891760, 4292400, 1834560, 423360, 40320
Offset: 1
Triangle begins:
[1],
[3, 2],
[13, 18, 6],
[73, 156, 108, 24],
[501, 1460, 1560, 720, 120],
...
-
t[n_, k_] := Sum[ Binomial[n-1, n-i-1]*n!/(n-i)!*Binomial[i, k], {i, 0, n}]; Table[t[n, k], {n, 1, 8}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Mar 22 2013 *)
-
for(n=1,10, for(k=0,n-1, print1(sum(j=0,n, binomial(j,k)* binomial(n-1,n-j-1)*n!/(n-j)!), ", "))) \\ G. C. Greubel, Jan 29 2018
A111599
Lah numbers: a(n) = n!*binomial(n-1,8)/9!.
Original entry on oeis.org
1, 90, 4950, 217800, 8494200, 309188880, 10821610800, 371026656000, 12614906304000, 428906814336000, 14668613050291200, 506733905373696000, 17735686688079360000, 630299019222512640000, 22780807409042242560000
Offset: 9
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
-
part_ZL:=[S,{S=Set(U,card=r),U=Sequence(Z,card>=1)}, labeled]: seq(count(subs(r=9,part_ZL),size=m),m=9..23) ; # Zerinvary Lajos, Mar 09 2007
-
Table[n!*Binomial[n-1, 8]/9!, {n, 9, 30}] (* Wesley Ivan Hurt, Dec 10 2013 *)
A111600
Lah numbers: a(n) = n!*binomial(n-1,9)/10!.
Original entry on oeis.org
1, 110, 7260, 377520, 17177160, 721440720, 28857628800, 1121325004800, 42890681433600, 1629845894476800, 61934143990118400, 2364758225077248000, 91043191665474048000, 3543681152517682176000, 139722285442125754368000
Offset: 10
- Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 156.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 44.
-
Table[n! * Binomial[n - 1, 9]/10!, {n, 10, 25}] (* Amiram Eldar, May 02 2022 *)
A169654
Triangle T(n, k) = A169643(n, k) - A169653(n, 1) + 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, -4, 1, 1, 24, 24, 1, 1, -138, -118, -138, 1, 1, 1110, 780, 780, 1110, 1, 1, -10120, -8188, -3358, -8188, -10120, 1, 1, 100856, 101976, 30240, 30240, 101976, 100856, 1, 1, -1088710, -1332574, -512062, -60478, -512062, -1332574, -1088710, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, -4, 1;
1, 24, 24, 1;
1, -138, -118, -138, 1;
1, 1110, 780, 780, 1110, 1;
1, -10120, -8188, -3358, -8188, -10120, 1;
1, 100856, 101976, 30240, 30240, 101976, 100856, 1;
1, -1088710, -1332574, -512062, -60478, -512062, -1332574, -1088710, 1;
1, 12700890, 18147240, 9132480, 816480, 816480, 9132480, 18147240, 12700890, 1;
-
A001263:= func< n,k | Binomial(n-1, k-1)*Binomial(n,k-1)/k >;
A169653:= func< n,k | (-1)^n*A001263(n, k)*(Factorial(k) + Factorial(n-k+1)) >;
A169654:= func< n,k | A169653(n, k) - A169653(n, 1) + 1 >;
[A169654(n, k): k in [1..n], n in [1..10]]; // G. C. Greubel, Feb 23 2021
-
t[n_, m_] = (-1)^n*(n!/m!)*Binomial[n-1, m-1];
T[n_, m_] = t[n, m] + t[n, n-m+1] - (-1)^n*(n! + 1) + 1;
Table[T[n,k], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Feb 23 2021 *)
-
def A001263(n, k): return binomial(n-1, k-1)*binomial(n,k-1)/k
def A169653(n, k): return (-1)^n*A001263(n, k)*(factorial(k) + factorial(n-k+1))
def A169654(n, k): return A169653(n, k) - A169653(n, 1) + 1
flatten([[A169654(n,k) for k in (1..n)] for n in (1..10)]) # G. C. Greubel, Feb 23 2021
A169656
Triangle, read by rows, T(n, k) = (-1)^n*(n!/k!)^2*binomial(n-1, k-1).
Original entry on oeis.org
-1, 4, 1, -36, -18, -1, 576, 432, 48, 1, -14400, -14400, -2400, -100, -1, 518400, 648000, 144000, 9000, 180, 1, -25401600, -38102400, -10584000, -882000, -26460, -294, -1, 1625702400, 2844979200, 948326400, 98784000, 3951360, 65856, 448, 1
Offset: 1
Triangle begins as:
-1;
4, 1;
-36, -18, -1;
576, 432, 48, 1;
-14400, -14400, -2400, -100, -1;
518400, 648000, 144000, 9000, 180, 1;
-25401600, -38102400, -10584000, -882000, -26460, -294, -1;
-
F:=Factorial;; Flat(List([1..10], n-> List([1..n], k-> (-1)^n*(F(n)/F(k) )^2*Binomial(n-1, k-1) ))); # G. C. Greubel, Nov 28 2019
-
F:=Factorial; [(-1)^n*(F(n)/F(k))^2*Binomial(n-1, k-1): k in [1..n], n in [1..10]]; // G. C. Greubel, Nov 28 2019
-
seq(seq( (-1)^n*(n!/k!)^2*binomial(n-1, k-1), k=1..n), n=1..10); # G. C. Greubel, Nov 28 2019
-
T[n_, k_]:= (-1)^n*(n!/k!)^2*Binomial[n-1, k-1]; Table[T[n, k], {n,10}, {k,n}]//Flatten
-
T(n,k) = (-1)^n*(n!/k!)^2*binomial(n-1, k-1); \\ G. C. Greubel, Nov 28 2019
-
f=factorial; [[(-1)^n*(f(n)/f(k))^2*binomial(n-1, k-1) for k in (1..n)] for n in (1..10)] # G. C. Greubel, Nov 28 2019
A169658
Triangle, read by rows, defined by T(n, k) = b(n, k) + b(n, n-k+1) - (b(n,1) + b(n,n)) + 1, where b(n, k) = (-1)^n*(n!/k!)^2 *binomial(n-1, k-1).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, -96, -96, 1, 1, -98, 9602, -98, 1, 1, 129780, -365400, -365400, 129780, 1, 1, -12701092, 14791142, 23637602, 14791142, -12701092, 1, 1, 1219277248, -677310144, -1522967040, -1522967040, -677310144, 1219277248, 1
Offset: 1
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, -96, -96, 1;
1, -98, 9602, -98, 1;
1, 129780, -365400, -365400, 129780, 1;
1, -12701092, 14791142, 23637602, 14791142, -12701092, 1;
-
b:= func< n,k | (-1)^n*(Factorial(n)/Factorial(k))^2*Binomial(n-1, k-1) >;
[[b(n, k) +b(n, n-k+1) -b(n,1) -b(n,n) +1: k in [1..n]]: n in [1..10]]; // G. C. Greubel, May 20 2019
-
L[n_, m_] = (-1)^n*(n!/m!)^2*Binomial[n-1, m-1];
t[n_, m_] = L[n, m] + L[n, n-m+1];
Table[t[n, m] - t[n, 1] + 1, {n, 1, 10}, {m, 1, n}]//Flatten
-
b(n, k) = (-1)^n*(n!/k!)^2 *binomial(n-1, k-1);
t(n, k) = b(n, k) + b(n, n-k+1);
for(n=1, 10, for(k=1, n, print1(t(n,k) - t(n,1) + 1, ", "))) \\ G. C. Greubel, May 20 2019
-
def b(n, k): return (-1)^n*factorial(n-k)^2*binomial(n,k)^2*binomial(n-1, k-1)
def t(n, k): return b(n, k) + b(n, n-k+1)
[[t(n,k) - t(n,1) + 1 for k in (1..n)] for n in (1..10)] # G. C. Greubel, May 20 2019
Original entry on oeis.org
1, 2, 5, 18, 91, 592, 4643, 42276, 436629, 5033182, 63974273, 888047414, 13358209647, 216334610860, 3751352135263, 69325155322184, 1359759373992105, 28206375825238458, 616839844140642301, 14181213537729200474, 341879141423814854915, 8623032181189674581256
Offset: 0
a(20) = 1 + 1 + 3 + 13 + 73 + 501 + 4051 + 37633 + 394353 + 4596553 + 58941091 + 824073141 + 12470162233 + 202976401213 + 3535017524403 + 65573803186921 + 1290434218669921 + 26846616451246353 + 588633468315403843 + 13564373693588558173 + 327697927886085654441.
-
l:= func< n,b | Evaluate(LaguerrePolynomial(n), b) >;
[n eq 0 select 1 else 1 + (&+[ Factorial(j)*( l(j,-1) - l(j-1,-1) ): j in [1..n]]): n in [0..25]]; // G. C. Greubel, Mar 09 2021
-
b:= proc(n) option remember; `if`(n=0, 1, add(
b(n-j)*j!*binomial(n-1, j-1), j=1..n))
end:
a:= proc(n) option remember; b(n)+`if`(n>0, a(n-1), 0) end:
seq(a(n), n=0..25); # Alois P. Heinz, May 11 2016
-
With[{m = 25}, CoefficientList[Exp[x/(1-x)] + O[x]^m, x] Range[0, m-1]!// Accumulate] (* Jean-François Alcover, Nov 21 2020 *)
Table[1 +Sum[j!*(LaguerreL[j, -1] -LaguerreL[j-1, -1]), {j,n}], {n,0,30}] (* G. C. Greubel, Mar 09 2021 *)
-
[1 + sum(factorial(j)*(gen_laguerre(j,0,-1) - gen_laguerre(j-1,0,-1)) for j in (1..n)) for n in (0..30)] # G. C. Greubel, Mar 09 2021
Original entry on oeis.org
1, 1, 9, 169, 5329, 251001, 16410601, 1416242689, 155514288609, 21128299481809, 3474052208270281, 679096541717605881, 155504946117339546289, 41199419449380747871369, 12496348897836314700506409
Offset: 0
-
Table[HypergeometricPFQ[{-n+1,-n},{},1]^2,{n,0,100}]
-
makelist(hypergeometric([-n+1,-n],[],1)^2,n,0,12);
Comments