A113164 a(n) = binomial(6, n)^2.
1, 36, 225, 400, 225, 36, 1
Offset: 0
Extensions
Edited by Don Reble, Jan 26 2006
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
for n from 0 to 5 do seq(binomial(i,n)*binomial(10-i,5-n), i=0+n..10-5+n ); # Zerinvary Lajos, Mar 31 2009
Triangle begins 1; 3, 1; 5, 8, 1; 7, 27, 15, 1; 9, 64, 84, 24, 1; 11, 125, 300, 200, 35, 1;
Table[Binomial[n, k]^2 - Binomial[n - 1, k], {n, 1, 10}, {k, 1, n}] // Flatten (* G. C. Greubel, Nov 20 2017 *)
for(n=1,10, for(k=0,n, print1(binomial(n,k)^2 - binomial(n-1,k)^2, ", "))) \\ G. C. Greubel, Nov 20 2017
Table begins \ k..0....1....2....3....4....5....6 n 0 |..1 1 |..2....2 2 |..5....6....5 3 |.14...18...18...14 4 |.42...56...60...56...42 5 |132..180..200..200..180..132 6 |429..594..675..700..675..594..429
Table[2 Binomial[n,k]^2 Binomial[2n+2,n]/ Binomial[2n+2,2k+1],{n,0,9},{k,0,n}]
solve(A=x*(A^2*y^2-2*A^2*y-2*A*y+A^2-2*A+1),A); /* Vladimir Kruchinin, Oct 24 2020 */
Triangle begins as: 1; 1, 1; 1, 9, 1; 1, 23, 23, 1; 1, 43, 101, 43, 1; 1, 69, 289, 289, 69, 1; 1, 101, 659, 1179, 659, 101, 1; 1, 139, 1301, 3639, 3639, 1301, 139, 1; 1, 183, 2323, 9351, 14629, 9351, 2323, 183, 1; 1, 233, 3851, 21083, 47501, 47501, 21083, 3851, 233, 1; 1, 289, 6029, 43079, 132089, 190259, 132089, 43079, 6029, 289, 1;
[3*Binomial(n, k)^2 -Binomial(n, k) -1: k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 27 2021
T:= (n,m) -> 3*Binomial(n,m)^2 - Binomial(n,m)-1: seq(seq(T(n,m),m=0..n),n=0..10); # Robert Israel, Jul 11 2016
Table[3*Binomial[n,k]^2 -Binomial[n,k] -1, {n,0,12}, {k,0,n}]//Flatten
flatten([[3*binomial(n, k)^2 -binomial(n, k) -1 for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 27 2021
Triangle begins: 1 1 1 1 4 1 1 5 5 1 1 6 16 6 1 1 7 22 22 7 1 1 8 29 64 29 8 1 1 9 37 93 93 37 9 1 1 10 46 130 256 130 46 10 1 1 11 56 176 386 386 176 56 11 1 ...
Flat(List([0..10],n->List([0..n],k->Sum([0..Minimum(k,n-k)],i->Binomial(n+1,i))))); # Muniru A Asiru, Dec 14 2018
T[n_, k_] := Sum[Binomial[n+1, i] , {i, 0, Min[k, n-k]}]; Table[T[n,k], {n,0,10}, {k,0,n}] // Flatten (* Amiram Eldar, Dec 14 2018 *)
a(n):=sum(sum(binomial(k-m,m)*binomial(n-k,k-m)^2,m,0,k/2),k,0,n);
a(n) = sum(k=0, n, sum(m=0, k\2, binomial(k-m, m)*binomial(n-k, k-m)^2)); \\ Michel Marcus, Feb 18 2019
N=66; x='x+O('x^N); Vec(1/sqrt(x^6+2*x^5-x^4-4*x^3-x^2-2*x+1)) \\ Seiichi Manyama, Feb 20 2019
The triangle begins as: 1; 1, 1; 1, 8, 1; 1, 30, 30, 1; 1, 80, 300, 80, 1; 1, 175, 1750, 1750, 175, 1; 1, 336, 7350, 19600, 7350, 336, 1; 1, 588, 24696, 144060, 144060, 24696, 588, 1; 1, 960, 70560, 790272, 1728720, 790272, 70560, 960, 1; 1, 1485, 178200, 3492720, 14669424, 14669424, 3492720, 178200, 1485, 1;
A142470:= func< n,k | ( (k+2)/(2*Binomial(k+2, 2)^2) )*Binomial(n, k)^2*Binomial(n+1, k)*Binomial(n+2, k) >; [A142470(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 03 2021
f[n_, k_]:= f[n, k]= Binomial[n, k]*Product[j!*(n+j)!/((k+j)!*(n-k+j)!), {j,1,2}]; T[n_, k_]:= Binomial[n, k]*f[n, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Apr 03 2021 *)
def A142470(n, k): return (2/((k+1)^2*(k+2)))*Binomial(n, k)^2*Binomial(n+1, k)*Binomial(n+2, k) flatten([[A142470(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 03 2021
Triangle begins as: 1; 1, 1; 1, 7, 1; 1, 49, 49, 1; 1, 361, 841, 361, 1; 1, 2881, 11881, 11881, 2881, 1; 1, 25201, 161281, 287281, 161281, 25201, 1; 1, 241921, 2217601, 6168961, 6168961, 2217601, 241921, 1; 1, 2540161, 31570561, 126403201, 197527681, 126403201, 31570561, 2540161, 1;
[Factorial(n)*(Binomial(n, k)^2 -1) + 1: k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 10 2021
T[n_, k_]:= n!*Binomial[n, k]^2 - n! + 1; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
flatten([[factorial(n)*(binomial(n, k)^2 -1) + 1 for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 10 2021
The triangle T begins: n\k 0 1 2 3 4 5 6 7 ... 0: 1 1: 1 4 2: 1 36 36 3: 1 144 900 400 4: 1 400 8100 19600 4900 5: 1 900 44100 313600 396900 63504 6: 1 1764 176400 2822400 9922500 7683984 853776 7: 1 3136 571536 17640000 133402500 276623424 144288144 11778624 ---------------------------------------------------------------------------- row n = 8: 1 5184 1587600 85377600 1200622500 5194373184 7070119056 2650190400 165636900, row n = 9: 1 8100 3920400 341510400 8116208100 63631071504 176752976400 169612185600 47869064100 2363904400, row n = 10: 1 12100 8820900 1177862400 44188244100 572679643536 2828047622400 5446435737600 3877394192100 853369488400 34134779536. ...
Flat(List([0..10],n->List([0..n],k->(Binomial(n,k)*Binomial(n+k,k))^2))); # Muniru A Asiru, May 15 2018
T[n_, k_] := (Gamma[k + n + 1]/(Gamma[k + 1]^2*Gamma[-k + n + 1]))^2; Flatten[Table[T[n, k], {n, 0, 8}, {k, 0, n}]] (* Peter Luschny, May 14 2018 *)
Comments