cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 66 results. Next

A047521 Numbers that are congruent to {0, 7} mod 8.

Original entry on oeis.org

0, 7, 8, 15, 16, 23, 24, 31, 32, 39, 40, 47, 48, 55, 56, 63, 64, 71, 72, 79, 80, 87, 88, 95, 96, 103, 104, 111, 112, 119, 120, 127, 128, 135, 136, 143, 144, 151, 152, 159, 160, 167, 168, 175, 176, 183, 184, 191, 192, 199, 200, 207, 208, 215, 216, 223, 224, 231, 232
Offset: 1

Views

Author

Keywords

Comments

Numbers such that the n-th triangular number is divisible by 4. - Charles R Greathouse IV, Apr 07 2011
Except for 0, numbers whose binary reflected Gray code (A014550) ends with 00. - Amiram Eldar, May 17 2021

Crossrefs

Union of A008590 and A004771.

Programs

  • Mathematica
    {#,#+7}&/@(8*Range[0,30])//Flatten (* or *) LinearRecurrence[{1,1,-1},{0,7,8},60] (* Harvey P. Dale, Oct 30 2016 *)
  • PARI
    a(n) = 4*n - 5/2 + 3*(-1)^n/2; \\ David Lovler, Jul 25 2022
  • R
    kmax <- 10 # by choice
    a <- c(0,7)
    for(k in 3:kmax) a <- c(a, a + 2^k)
    a
    # Yosu Yurramendi, Jan 18 2022
    

Formula

a(n) = 8*n - a(n-1) - 9 (with a(1)=0). - Vincenzo Librandi, Aug 06 2010
From R. J. Mathar, Oct 08 2011: (Start)
a(n) = 3*(-1)^n/2 - 5/2 + 4*n.
G.f.: x^2*(7+x) / ( (1+x)*(x-1)^2 ). (End)
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k) with b(0)=7 and b(k)=2^(k+2) for k > 0. - Philippe Deléham, Oct 17 2011
Sum_{n>=2} (-1)^n/a(n) = log(2)/2 + sqrt(2)*log(sqrt(2)+1)/8 - (sqrt(2)+1)*Pi/16. - Amiram Eldar, Dec 18 2021
E.g.f.: 1 + ((8*x -5)*exp(x) + 3*exp(-x))/2. David Lovler, Aug 22 2022

Extensions

More terms from Vincenzo Librandi, Aug 06 2010

A085131 Multiples of 8 which are 7-smooth.

Original entry on oeis.org

8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 96, 112, 120, 128, 144, 160, 168, 192, 200, 216, 224, 240, 256, 280, 288, 320, 336, 360, 384, 392, 400, 432, 448, 480, 504, 512, 560, 576, 600, 640, 648, 672, 720, 768, 784, 800, 840, 864, 896, 960, 1000, 1008, 1024
Offset: 1

Views

Author

Amarnath Murthy, Jul 06 2003

Keywords

Comments

Equivalently, multiples of 8 with the largest prime divisor < 10.

Crossrefs

Programs

  • Mathematica
    Select[8*Range[200],FactorInteger[#][[-1,1]]<10&] (* Harvey P. Dale, Oct 22 2017 *)

Formula

From Amiram Eldar, Sep 22 2024: (Start)
a(n) = 8*A002473(n).
Sum_{n>=1} 1/a(n) = 35/64. (End)

Extensions

More terms from David Wasserman, Jan 28 2005
Offset changed by Andrew Howroyd, Sep 22 2024

A087410 Multiples of 8 with digits grouped in pairs and leading zeros omitted.

Original entry on oeis.org

81, 62, 43, 24, 4, 85, 66, 47, 28, 8, 89, 61, 4, 11, 21, 20, 12, 81, 36, 14, 41, 52, 16, 1, 68, 17, 61, 84, 19, 22, 0, 20, 82, 16, 22, 42, 32, 24, 2, 48, 25, 62, 64, 27, 22, 80, 28, 82, 96, 30, 43, 12, 32, 3, 28, 33, 63, 44, 35, 23, 60, 36, 83, 76, 38, 43, 92, 40, 4, 8, 41, 64, 24
Offset: 1

Views

Author

N. J. A. Sloane, Oct 19 2003

Keywords

Crossrefs

Programs

  • Mathematica
    FromDigits /@ Partition[ Flatten[ IntegerDigits[ Table[ 8n, {n, 1, 60}]]], 2] (* Robert G. Wilson v *)

Extensions

More terms from Ray Chandler, Oct 20 2003

A144433 Multiples of 8 interleaved with the sequence of odd numbers >= 3.

Original entry on oeis.org

8, 3, 16, 5, 24, 7, 32, 9, 40, 11, 48, 13, 56, 15, 64, 17, 72, 19, 80, 21, 88, 23, 96, 25, 104, 27, 112, 29, 120, 31, 128, 33, 136, 35, 144, 37, 152, 39, 160, 41, 168, 43, 176, 45, 184, 47, 192, 49, 200, 51, 208, 53, 216, 55, 224, 57, 232, 59, 240, 61, 248, 63, 256, 65, 264
Offset: 1

Views

Author

Paul Curtz, Oct 04 2008

Keywords

Comments

For n >= 2, these are the numerators of 1/n^2 - 1/(n+1)^2: A061037(4), A061039(5), A061041(6), A061043(7), A061045(8), A061047(9), A061049(10), etc.

Crossrefs

Cf. A120070.

Programs

Formula

a(2*n+1) = A008590(n+1), a(2*n) = A005408(n).
a(2*n+1) + a(2*n+2) = A017281(n+1).
From R. J. Mathar, Apr 01 2009: (Start)
a(n) = 2*a(n-2) - a(n-4).
G.f.: x*(8+3*x-x^3)/((1-x)^2*(1+x)^2). (End)
a(n) = (n + 1) * 4^(n mod 2). - Wesley Ivan Hurt, Nov 27 2013

Extensions

Edited by R. J. Mathar, Apr 01 2009

A225358 Partition numbers of the form 8k.

Original entry on oeis.org

56, 176, 792, 2323520, 4087968, 8118264, 92669720, 118114304, 150198136, 384276336, 541946240, 1188908248, 1844349560, 2291320912, 3163127352, 4351078600, 5371315400, 5964539504, 7346629512, 10015581680, 11097645016, 16670689208, 18440293320
Offset: 1

Views

Author

Omar E. Pol, May 05 2013

Keywords

Comments

Intersection of A008590 and A000041.

Examples

			56 is in the sequence because 8*7 = 56 and 56 is a partition number: p(11) = A000041(11) = 56.
		

Crossrefs

Programs

  • Mathematica
    Select[PartitionsP[Range[300]], Mod[#, 8] == 0 &]

Formula

a(n) = 8*A222178(n).

A098502 a(n) = 16*n - 4.

Original entry on oeis.org

12, 28, 44, 60, 76, 92, 108, 124, 140, 156, 172, 188, 204, 220, 236, 252, 268, 284, 300, 316, 332, 348, 364, 380, 396, 412, 428, 444, 460, 476, 492, 508, 524, 540, 556, 572, 588, 604, 620, 636, 652, 668, 684, 700, 716, 732, 748, 764, 780, 796, 812, 828, 844
Offset: 1

Views

Author

Ralf Stephan, Sep 15 2004

Keywords

Comments

For n > 3, the number of squares on the infinite 4-column chessboard at <= n knight moves from any fixed start point.

Crossrefs

Programs

Formula

G.f.: 4*x*(3+x)/(1-x)^2. - Colin Barker, Jan 09 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi + log(3 - 2*sqrt(2)))/(16*sqrt(2)). - Amiram Eldar, Sep 01 2024
From Elmo R. Oliveira, Apr 03 2025: (Start)
E.g.f.: 4*(exp(x)*(4*x - 1) + 1).
a(n) = 2*a(n-1) - a(n-2) for n > 2.
a(n) = 4*A004767(n-1) = 2*A017137(n-1) = A017113(2*n-1). (End)

A164897 a(n) = 4*n*(n+1) + 3.

Original entry on oeis.org

3, 11, 27, 51, 83, 123, 171, 227, 291, 363, 443, 531, 627, 731, 843, 963, 1091, 1227, 1371, 1523, 1683, 1851, 2027, 2211, 2403, 2603, 2811, 3027, 3251, 3483, 3723, 3971, 4227, 4491, 4763, 5043, 5331, 5627, 5931, 6243, 6563, 6891, 7227, 7571, 7923, 8283, 8651, 9027, 9411
Offset: 0

Views

Author

Paul Curtz, Aug 30 2009

Keywords

Comments

One-fourth the sum of the three terms produced by the division of complex numbers (2*n-3+(2*n-1)*i)/(2*n+1+(2*n+3)*i). For (b+c*i)/(d+e*i) the three terms in parentheses are ((b*d+c*e)+(c*d-b*e)*i)/(d^2+e^2). By substituting b=2*n-3, c=2*n-1, d=2*n+1, and e=2*n+3 one gets a(n). - J. M. Bergot, Sep 10 2015
The continued fraction expansion of sqrt(a(n)) is [2n+1; {2n+1, 4n+2}]. - Magus K. Chu, Sep 08 2022

Crossrefs

Odd-indexed terms of A059100.

Programs

Formula

a(n) = A000124(2*n) + A000124(2*n+1) = A069894(n)+1.
a(n+1) - a(n) = 8n+8 = A008590(n+1) (first differences).
a(n+1) - 2*a(n) + a(n-1) = 8 = A010731(n) (second differences).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n>2.
G.f.: (3+2*x+3*x^2) / (1-x)^3.
Sum_{k=n+1..2*n+1} a(k) - Sum_{k=0..n} a(k) = (2*n+2)^3. - Bruno Berselli, Jan 24 2011
E.g.f.: (4x^2 + 8x + 1)*exp(x). - G. C. Greubel, Sep 22 2015
a(n)^2 = A222465(n)*A222465(n+1) - 12. - Ezhilarasu Velayutham, Mar 18 2020
Sum_{n>=0} 1/a(n) = tanh(Pi/sqrt(2))*Pi/(4*sqrt(2)). - Amiram Eldar, Aug 21 2022
a(n) = A059100(2*n+1). - Dimitri Papadopoulos, Nov 21 2023

Extensions

Definition simplified by R. J. Mathar, Sep 16 2009

A166911 a(n) = (9 + 14*n + 12*n^2 + 4*n^3)/3.

Original entry on oeis.org

3, 13, 39, 89, 171, 293, 463, 689, 979, 1341, 1783, 2313, 2939, 3669, 4511, 5473, 6563, 7789, 9159, 10681, 12363, 14213, 16239, 18449, 20851, 23453, 26263, 29289, 32539, 36021, 39743, 43713, 47939, 52429, 57191, 62233, 67563, 73189, 79119, 85361, 91923
Offset: 0

Views

Author

Paul Curtz, Oct 23 2009

Keywords

Comments

The inverse binomial transform yields the quasi-finite sequence 3,10,16,8,0,.. (0 continued).
These are the bottom-left numbers in the blocks (each with 2 rows) shown in A172002, the
atomic number of the leftmost element in the 2nd, 4th, 6th etc. row of the Janet table.

References

  • Charles Janet, La structure du noyau de l'atome .., Nov 1927, page 15.

Programs

Formula

First differences: a(n)-a(n-1) = 2+4*n+4*n^2 = 1+(1+2n)^2 = 1 + A016754(n+1) = A069894(n+1).
Second differences: a(n) - 2*a(n-1) + a(n-2) = 8*n = A008590(n+2).
Third differences: a(n) - 3*a(n-1) + 3*a(n-2) - a(n-3) = 8.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: (3 + x + 5*x^2 - x^3)/(1-x)^4.
a(n) = A166464(n) + 2*(n+1)^2 = A166464(n) + A001105(n+1).
E.g.f.: (1/3)*(9 + 30*x + 24*x^2 + 4*x^3)*exp(x). - G. C. Greubel, May 28 2016

Extensions

Edited and extended by R. J. Mathar, Mar 02 2010

A244082 a(n) = 32*n^2.

Original entry on oeis.org

0, 32, 128, 288, 512, 800, 1152, 1568, 2048, 2592, 3200, 3872, 4608, 5408, 6272, 7200, 8192, 9248, 10368, 11552, 12800, 14112, 15488, 16928, 18432, 20000, 21632, 23328, 25088, 26912, 28800, 30752, 32768, 34848, 36992, 39200, 41472, 43808, 46208, 48672, 51200
Offset: 0

Views

Author

Wesley Ivan Hurt, Jun 19 2014

Keywords

Comments

Geometric connections of a(n) to the area and perimeter of a square.
Area:
. half the area of a square with side 8n (cf. A008590);
. area of a square with diagonal 8n (cf. A008590);
. twice the area of a square with side 4n (cf. A008586);
. four times the area of a square with diagonal 4n (cf. A008586);
. eight times the area of a square with side 2n (cf. A005843);
. sixteen times the area of a square with diagonal 2n (cf. A005843);
. thirty two times the area of a square with side n (cf. A001477);
. sixty four times the area of a square with diagonal n (cf. A001477).
Perimeter:
. perimeter of a square with side 8n^2 (cf. A139098);
. twice the perimeter of a square with side 4n^2 (cf. A016742);
. four times the perimeter of a square with side 2n^2 (cf. A001105);
. eight times the perimeter of a square with side n^2 (cf. A000290).
Sequence found by reading the line from 0, in the direction 0, 32, ..., in the square spiral whose vertices are the generalized 18-gonal numbers. - Omar E. Pol, May 10 2018

Crossrefs

Programs

  • Magma
    [32*n^2 : n in [0..50]];
    
  • Maple
    A244082:=n->32*n^2; seq(A244082(n), n=0..50);
  • Mathematica
    32 Range[0, 50]^2 (* or *)
    Table[32 n^2, {n, 0, 50}] (* or *)
    CoefficientList[Series[32 x (1 + x)/(1 - x)^3, {x, 0, 30}], x]
  • PARI
    a(n)=32*n^2 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: 32*x*(1+x)/(1-x)^3.
a(n) = 2 * A016802(n).
a(n) = 4 * A139098(n).
a(n) = 8 * A016742(n).
a(n) = 16 * A001105(n).
a(n) = 32 * A000290(n).
a(n) = A010021(n) - 2 for n > 0. - Bruno Berselli, Jun 24 2014
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Wesley Ivan Hurt, Nov 19 2021
From Elmo R. Oliveira, Dec 02 2024: (Start)
E.g.f.: 32*x*(1 + x)*exp(x).
a(n) = n*A174312(n) = A139098(2*n). (End)

A105020 Array read by antidiagonals: row n (n >= 0) contains the numbers m^2 - n^2, m >= n+1.

Original entry on oeis.org

1, 3, 4, 5, 8, 9, 7, 12, 15, 16, 9, 16, 21, 24, 25, 11, 20, 27, 32, 35, 36, 13, 24, 33, 40, 45, 48, 49, 15, 28, 39, 48, 55, 60, 63, 64, 17, 32, 45, 56, 65, 72, 77, 80, 81, 19, 36, 51, 64, 75, 84, 91, 96, 99, 100, 21, 40, 57, 72, 85, 96, 105, 112, 117, 120, 121
Offset: 0

Views

Author

Keywords

Comments

A "Goldbach Conjecture" for this sequence: when there are n terms between consecutive odd integers (2n+1) and (2n+3) for n > 0, at least one will be the product of 2 primes (not necessarily distinct). Example: n=3 for consecutive odd integers a(7)=7 and a(11)=9 and of the 3 sequence entries a(8)=12, a(9)=15 and a(10)=16 between them, one is the product of 2 primes a(9)=15=3*5. - Michael Hiebl, Jul 15 2007
A024352 gives distinct values in the array, minus the first row (1, 4, 9, 16, etc.). a(n) gives all solutions to the equation x^2 + xy = n, with y mod 2 = 0, x > 0, y >= 0. - Andrew S. Plewe, Oct 19 2007
Alternatively, triangular sequence of coefficients of Dynkin diagram weights for the Cartan groups C_n: t(n,m) = m*(2*n - m). Row sums are A002412. - Roger L. Bagula, Aug 05 2008

Examples

			Array begins:
  1  4  9 16 25 36  49  64  81 100 ...
  3  8 15 24 35 48  63  80  99 120 ...
  5 12 21 32 45 60  77  96 117 140 ...
  7 16 27 40 55 72  91 112 135 160 ...
  9 20 33 48 65 84 105 128 153 180 ...
  ...
Triangle begins:
   1;
   3,  4;
   5,  8,  9;
   7, 12, 15, 16;
   9, 16, 21, 24, 25;
  11, 20, 27, 32, 35, 36;
  13, 24, 33, 40, 45, 48, 49;
  15, 28, 39, 48, 55, 60, 63, 64;
  17, 32, 45, 56, 65, 72, 77, 80, 81;
  19, 36, 51, 64, 75, 84, 91, 96, 99, 100;
		

References

  • R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 139.

Crossrefs

Programs

  • Magma
    [(k+1)*(2*n-k+1): k in [0..n], n in [0..15]]; // G. C. Greubel, Mar 15 2023
    
  • Mathematica
    t[n_, m_]:= (n^2 - m^2); Flatten[Table[t[i, j], {i,12}, {j,i-1,0,-1}]]
    (* to view table *) Table[t[i, j], {j,0,6}, {i,j+1,10}]//TableForm (* Robert G. Wilson v, Jul 11 2005 *)
    Table[(k+1)*(2*n-k+1), {n,0,15}, {k,0,n}]//Flatten (* Roger L. Bagula, Aug 05 2008 *)
  • SageMath
    def A105020(n,k): return (k+1)*(2*n-k+1)
    flatten([[A105020(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Mar 15 2023

Formula

a(n) = r^2 - (r^2 + r - m)^2/4, where r = round(sqrt(m)) and m = 2*n+2. - Wesley Ivan Hurt, Sep 04 2021
a(n) = A128076(n+1) * A105020(n+1). - Wesley Ivan Hurt, Jan 07 2022
From G. C. Greubel, Mar 15 2023: (Start)
Sum_{k=0..n} T(n, k) = A002412(n+1).
Sum_{k=0..n} (-1)^k*T(n, k) = (1/2)*((1+(-1)^n)*A000384((n+2)/2) - (1- (-1)^n)*A000384((n+1)/2)). (End)

Extensions

More terms from Robert G. Wilson v, Jul 11 2005
Previous Showing 31-40 of 66 results. Next