cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 92 results. Next

A144812 Integers having ideal digital mean up to base 7.

Original entry on oeis.org

36990, 37230, 43350, 45390, 2149023720, 2149218300, 2149279740, 2149513020, 2149527540, 2149545960, 2151079740, 2151628020, 2151662460, 2151667320, 2152716540, 2152720860, 2152724280, 2153463540, 2154166200, 2154948600, 2155019220, 2155051980, 2155196340
Offset: 1

Views

Author

Reikku Kulon, Sep 21 2008

Keywords

Comments

These numbers have digital mean dm(b, n) = (Sum_{i=1..d} 2*d_i - (b-1)) / (2*d) = 0, where d is the number of digits in the base b representation of n and d_i the individual digits, for 2 <= b <= 7.
There are no integers less than 2^32 for which this is true to base 8. It is believed there are either infinitely many starting at some larger n, or none. If they exist, it is conjectured that the set of all similar sequences continues at least to base ten, almost certainly to base 16 and likely to arbitrarily large b. Sequences for b at least ten have an intersection with A144777.

Crossrefs

A017233 a(n) = 9*n + 6.

Original entry on oeis.org

6, 15, 24, 33, 42, 51, 60, 69, 78, 87, 96, 105, 114, 123, 132, 141, 150, 159, 168, 177, 186, 195, 204, 213, 222, 231, 240, 249, 258, 267, 276, 285, 294, 303, 312, 321, 330, 339, 348, 357, 366, 375, 384, 393, 402, 411, 420, 429, 438, 447, 456, 465, 474, 483
Offset: 0

Views

Author

David J. Horn and Laura Krebs Gordon (lkg615(AT)verizon.net), 1985

Keywords

Comments

General form: (q*n-1)*q, cf. A017233 (q=3), A098502 (q=4). - Vladimir Joseph Stephan Orlovsky, Feb 16 2009
Numbers whose digital root is 6; that is, A010888(a(n)) = 6. (Ball essentially says that Iamblichus (circa 350) announced that a number equal to the sum of three integers 3*n, 3*n - 1, and 3*n - 2 has 6 as what is now called the number's digital root.) - Rick L. Shepherd, Apr 01 2014

References

  • W. W. R. Ball, A Short Account of the History of Mathematics, Sterling Publishing Company, Inc., 2001 (Facsimile Edition) [orig. pub. 1912], pages 110-111.

Crossrefs

Programs

Formula

G.f.: 3*(2+x)/(x-1)^2. - R. J. Mathar, Mar 20 2018
Sum_{n>=0} (-1)^n/a(n) = sqrt(3)*Pi/27 - log(2)/9. - Amiram Eldar, Dec 12 2021
E.g.f.: 3*exp(x)*(2 + 3*x). - Stefano Spezia, Dec 07 2024
From Elmo R. Oliveira, Apr 10 2025: (Start)
a(n) = 3*A016789(n) = A019557(n+1)/2.
a(n) = 2*a(n-1) - a(n-2). (End)

A212704 a(n) = 9*n*10^(n-1).

Original entry on oeis.org

9, 180, 2700, 36000, 450000, 5400000, 63000000, 720000000, 8100000000, 90000000000, 990000000000, 10800000000000, 117000000000000, 1260000000000000, 13500000000000000, 144000000000000000, 1530000000000000000, 16200000000000000000, 171000000000000000000, 1800000000000000000000
Offset: 1

Views

Author

Stanislav Sykora, May 25 2012

Keywords

Comments

Main transitions in systems of n particles with spin 9/2.
Please, refer to the general explanation in A212697.
This particular sequence is obtained for base b=10, corresponding to spin S = (b-1)/2 = 9/2.
Number of 0 needed to write all numbers of n+1 digits. - Bruno Berselli, Jun 30 2014
Essentially the same as A113119. - Bernard Schott, Nov 15 2022
From Bernard Schott, Nov 22 2022: (Start)
Number of nonzero digits needed to write all integers from 1 up to 10^n - 1.
a(n) is a square iff n in { A016754 union A033583\{0} } (see formulas). (End)

Crossrefs

Programs

  • Mathematica
    Rest@ CoefficientList[Series[9 x/(10 x - 1)^2, {x, 0, 18}], x] (* or *)
    Array[9 # 10^(# - 1) &, 18] (* Michael De Vlieger, Nov 18 2019 *)
  • PARI
    mtrans(n, b) = n*(b-1)*b^(n-1);
    a(n) = mtrans(n, 10);
    
  • Python
    def a(n): return 9*n*10**(n-1)
    print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Nov 14 2022

Formula

a(n) = n*(b-1)*b^(n-1) with b=10.
From R. J. Mathar, Oct 15 2013: (Start)
G.f.: 9*x/(10*x-1)^2.
a(n) = 9*A053541(n). (End)
From Bernard Schott, Nov 14 2022: (Start)
a(n+1) - a(n) = 9*A081045(n).
a(n) = A113119(n) for n > 1.
a(n) = A033713(n+1) - A033713(n) = A033714(n+1) - A033714(n).
a(A016754(n)) = (3 * (2n+1) * 10^(2*n*(n+1)))^2.
a(A033583(n)) = (3 * n * 10^(5*n^2))^2. (End)
From Elmo R. Oliveira, May 13 2025: (Start)
E.g.f.: 9*x*exp(10*x).
a(n) = A008591(n)*A011557(n-1).
a(n) = 20*a(n-1) - 100*a(n-2) for n > 2. (End)

A283123 a(n) = sigma(9*n).

Original entry on oeis.org

13, 39, 40, 91, 78, 120, 104, 195, 121, 234, 156, 280, 182, 312, 240, 403, 234, 363, 260, 546, 320, 468, 312, 600, 403, 546, 364, 728, 390, 720, 416, 819, 480, 702, 624, 847, 494, 780, 560, 1170, 546, 960, 572, 1092, 726, 936, 624, 1240, 741, 1209
Offset: 1

Views

Author

Seiichi Manyama, Mar 01 2017

Keywords

Comments

In general, for k>=1, Sum_{j=1..n} sigma(j*k) ~ A069097(k) * Pi^2 * n^2 / (12*k). - Vaclav Kotesovec, May 11 2024

Crossrefs

Sigma(k*n): A000203 (k=1), A062731 (k=2), A144613 (k=3), A193553 (k=4), A283118 (k=5), A224613 (k=6), A283078 (k=7), A283122 (k=8), this sequence (k=9).
Cf. A008591.

Programs

Formula

a(n) = A000203(9*n).
Sum_{k=1..n} a(k) = (35*Pi^2/36) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022

A279769 Numbers n such that the sum of digits of 9n is 18.

Original entry on oeis.org

11, 21, 22, 31, 32, 33, 41, 42, 43, 44, 51, 52, 53, 54, 55, 61, 62, 63, 64, 65, 66, 71, 72, 73, 74, 75, 76, 77, 81, 82, 83, 84, 85, 86, 87, 88, 91, 92, 93, 94, 95, 96, 97, 98, 99, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 121, 122, 131, 132, 133, 141
Offset: 1

Views

Author

M. F. Hasler, Dec 18 2016

Keywords

Comments

Differs from A084854 from a(55) = 110 on.
Numbers n such that A008591(n) is a term of A235228. - Felix Fröhlich, Dec 18 2016
The digital sum of 9n is always a multiple of 9, and never zero. For most numbers < 100, the digital sum is equal to 9, but for example in the range [91..110] all numbers except 100 have their digital sum equal to 18. The b-file / graph gives a hint on the "asymptotic" distribution / density of this set. After a "flat" range like that at [91..110] there comes a record gap. Sizes [and upper ends] of record gaps are: 10 [a(2) = 21], 11 [a(56) = 121, a(119) = 231, a(188) = 341, ..., a(553) = 891, a(616) = 1001], 21 [a(671) = 1121], 31 [a(1331) = 2231], ..., 91 [a(4339) = 8891], 101 [a(4621) = 10001], 121 [a(4841) = 11121], 231 [a(9176) = 22231], ..., 891 [a(24217) = 88891], 1001 [a(25213) = 100001], 1121 [a(25928) = 111121], 2231 [a(47510) = 222231], ..., 8891 [a(108577) = 888891], 10001 [a(111574) = 1000001], 11121 [a(113576) = 1111121], 22231 [a(202511) = 2222231], ..., 88891 [a(416215) = 8888891], ... - M. F. Hasler, Dec 22 2016

Crossrefs

Cf. A007953 (digital sum), A008591, A084854.
Cf. A279772 (sumdigits(2n) = 4), A279773 (sumdigits(3n) = 6), A279774 (sumdigits(4n) = 8), A279775 (sumdigits(5n) = 10), A279776 (sumdigits(6n) = 12), A279770 (sumdigits(7n) = 14), A279768 (sumdigits(8n) = 16), A279769 (sumdigits(9n) = 18), A279777 (sumdigits(9n) = 27).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Cf. A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).

Programs

  • Mathematica
    Select[Range@ 141, Total@ IntegerDigits[9 #] == 18 &]
  • PARI
    is(n) = sumdigits(9*n)==18 \\ Felix Fröhlich, Dec 18 2016

Formula

a(n) = A235228(n)/9.

A325820 Multiplication table for carryless product i X j in base 3 for i >= 0 and j >= 0, read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 1, 3, 0, 0, 4, 6, 6, 4, 0, 0, 5, 8, 9, 8, 5, 0, 0, 6, 7, 12, 12, 7, 6, 0, 0, 7, 3, 15, 16, 15, 3, 7, 0, 0, 8, 5, 18, 11, 11, 18, 5, 8, 0, 0, 9, 4, 21, 24, 13, 24, 21, 4, 9, 0, 0, 10, 18, 24, 19, 21, 21, 19, 24, 18, 10, 0, 0, 11, 20, 27, 23, 26, 9, 26, 23, 27, 20, 11, 0, 0, 12, 19, 30, 36, 19, 15, 15, 19, 36, 30, 19, 12, 0
Offset: 0

Views

Author

Antti Karttunen, May 22 2019

Keywords

Examples

			The array begins as:
  0,  0,  0,  0,  0,  0,  0,  0,  0,   0,   0,   0,   0, ...
  0,  1,  2,  3,  4,  5,  6,  7,  8,   9,  10,  11,  12, ...
  0,  2,  1,  6,  8,  7,  3,  5,  4,  18,  20,  19,  24, ...
  0,  3,  6,  9, 12, 15, 18, 21, 24,  27,  30,  33,  36, ...
  0,  4,  8, 12, 16, 11, 24, 19, 23,  36,  40,  44,  48, ...
  0,  5,  7, 15, 11, 13, 21, 26, 19,  45,  50,  52,  33, ...
  0,  6,  3, 18, 24, 21,  9, 15, 12,  54,  60,  57,  72, ...
  0,  7,  5, 21, 19, 26, 15, 13, 11,  63,  70,  68,  57, ...
  0,  8,  4, 24, 23, 19, 12, 11, 16,  72,  80,  76,  69, ...
  0,  9, 18, 27, 36, 45, 54, 63, 72,  81,  90,  99, 108, ...
  0, 10, 20, 30, 40, 50, 60, 70, 80,  90, 100,  83, 120, ...
  0, 11, 19, 33, 44, 52, 57, 68, 76,  99,  83,  91, 132, ...
  0, 12, 24, 36, 48, 33, 72, 57, 69, 108, 120, 132, 144, ...
  etc.
A(2,2) = 2*2 mod 3 = 1.
		

Crossrefs

Cf. A169999 (the main diagonal).
Row/Column 0: A000004, Row/Column 1: A001477, Row/Column 2: A004488, Row/Column 3: A008585, Row/Column 4: A242399, Row/Column 9: A008591.
Cf. A325821 (same table without the zero row and column).
Cf. A048720 (binary), A059692 (decimal), A004247 (full multiply).

Programs

  • PARI
    up_to = 105;
    A325820sq(b, c) = fromdigits(Vec(Pol(digits(b,3))*Pol(digits(c,3)))%3, 3);
    A325820list(up_to) = { my(v = vector(up_to), i=0); for(a=0,oo, for(col=0,a, if(i++ > up_to, return(v)); v[i] = A325820sq(a-col,col))); (v); };
    v325820 = A325820list(up_to);
    A325820(n) = v325820[1+n];

A279777 Numbers k such that the sum of digits of 9k is 27.

Original entry on oeis.org

111, 211, 221, 222, 311, 321, 322, 331, 332, 333, 411, 421, 422, 431, 432, 433, 441, 442, 443, 444, 511, 521, 522, 531, 532, 533, 541, 542, 543, 544, 551, 552, 553, 554, 555, 611, 621, 622, 631, 632, 633, 641, 642, 643, 644, 651, 652, 653, 654, 655, 661
Offset: 1

Views

Author

M. F. Hasler, Dec 23 2016

Keywords

Comments

The digital sum of 9k is always a multiple of 9. For most numbers below 100 it is actually equal to 9. Numbers such that the digital sum of 9k is 18 are listed in A279769. Only every third term of the present sequence is divisible by 3.
The sequence of record gaps [and upper end of the gap] is: 100 [a(2) = 211], 101 [a(221) = 1211], 111 [a(4841) = 11211], 111 [a(10121) = 22311], 111 [a(15752) = 33411], ..., 111 [a(45133) = 88911], 111 [a(50413) = 100011], 211 [a(55253) = 111211], 311 [a(110000) = 222311], ..., 911 [a(380557) = 888911], 1011 [a(411049) = 1000011], 1211 [a(436976) = 1111211], 2311 [a(840281) = 2222311], ..., 8911 [a(2451241) = 8888911], ...

Crossrefs

Cf. A008591, A084854, A003991, A004247, A279769 (sumdigits(9n) = 18).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).
Cf. A007953 (digital sum), A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Cf. A082259.

Programs

  • Mathematica
    Select[Range@ 661, Total@ IntegerDigits[9 #] == 27 &] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    is(n)=sumdigits(9*n)==27

A373992 Numbers k such that A328768(k) is a multiple of 3, where A328768 is the first primorial based variant of arithmetic derivative.

Original entry on oeis.org

0, 1, 5, 7, 8, 9, 11, 13, 17, 18, 19, 23, 25, 27, 29, 31, 35, 36, 37, 40, 41, 43, 45, 47, 49, 53, 54, 55, 56, 59, 61, 63, 64, 65, 67, 71, 72, 73, 77, 79, 81, 83, 85, 88, 89, 90, 91, 95, 97, 99, 101, 103, 104, 107, 108, 109, 113, 115, 117, 119, 121, 125, 126, 127, 131, 133, 135, 136, 137, 139, 143, 144, 145, 149
Offset: 1

Views

Author

Antti Karttunen, Jun 26 2024

Keywords

Comments

Term is present if and only if it is either a multiple of 9, or it is not a multiple of 3 but its 2-adic valuation is (a multiple of 3).
A multiplicative semigroup: if m and n are in the sequence, then so is m*n.
The asymptotic density of this sequence is 31/63. - Amiram Eldar, Jun 28 2024

Crossrefs

Cf. A328768, A373991 (characteristic function).
Union of A008591 and A374044.
Cf. A374042 (subsequence).
Cf. also A042965 (where A328768 is a multiple of 2), A327863 (where A003415 is a multiple of 3).

Programs

  • Mathematica
    Select[Range[0, 150], Divisible[#, 9] || (!Divisible[#, 3] && Divisible[IntegerExponent[#, 2], 3]) &] (* Amiram Eldar, Jun 28 2024 *)
  • PARI
    isA373992 = A373991;

A045644 Palindromic and divisible by 9.

Original entry on oeis.org

0, 9, 99, 171, 252, 333, 414, 585, 666, 747, 828, 909, 999, 1881, 2772, 3663, 4554, 5445, 6336, 7227, 8118, 9009, 9999, 10701, 11511, 12321, 13131, 14841, 15651, 16461, 17271, 18081, 18981, 19791, 20502, 21312, 22122, 23832, 24642, 25452, 26262
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[9*Range[0,3000],PalindromeQ] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 30 2020 *)

Extensions

Edited to include a(1) = 0 by Paolo Xausa, Jul 07 2025

A054966 Numbers that are congruent to {0, 1, 8} mod 9.

Original entry on oeis.org

0, 1, 8, 9, 10, 17, 18, 19, 26, 27, 28, 35, 36, 37, 44, 45, 46, 53, 54, 55, 62, 63, 64, 71, 72, 73, 80, 81, 82, 89, 90, 91, 98, 99, 100, 107, 108, 109, 116, 117, 118, 125, 126, 127, 134, 135, 136, 143, 144, 145, 152, 153, 154, 161, 162, 163, 170, 171, 172, 179, 180
Offset: 1

Views

Author

Henry Bottomley, May 24 2000

Keywords

Comments

n == n^3 mod 9, so the iterated sum of the decimal digits of n and n^3 are equal.

References

  • H. I. Okagbue, M.O.Adamu, S.A. Bishop and A.A. Opanuga, Properties of Sequences Generated by Summing the Digits of Cubed Positive Integers, Indian Journal Of Natural Sciences, Vol. 6 / Issue 32 / October 2015

Crossrefs

Cf. A047523. Complement of A275910.

Programs

  • Magma
    [n : n in [0..200] | n mod 9 in [0, 1, 8]]; // Wesley Ivan Hurt, Jun 14 2016
  • Maple
    A054966:=n->3*n-3+2*cos(2*n*Pi/3)+2*sin(2*n*Pi/3)/sqrt(3): seq(A054966(n), n=1..100); # Wesley Ivan Hurt, Jun 14 2016
  • Mathematica
    Select[Range[0, 200], MemberQ[{0, 1, 8}, Mod[#, 9]] &] (* Wesley Ivan Hurt, Jun 14 2016 *)
    LinearRecurrence[{1, 0, 1, -1}, {0, 1, 8, 9}, 100] (* Vincenzo Librandi, Jun 15 2016 *)

Formula

G.f.: x^2*(1+7*x+x^2) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 3*n-3+2*cos(2*n*Pi/3)+2*sin(2*n*Pi/3)/sqrt(3).
a(3k) = 9k-1, a(3k-1) = 9k-8, a(3k-2) = 9k-9. (End)
A008591 UNION A056020. - R. J. Mathar, Jul 19 2024
a(n) -a(n-1) = A105395(n+1), n>1. - R. J. Mathar, Jul 19 2024
Previous Showing 21-30 of 92 results. Next