cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 93 results. Next

A178359 Rounded up arithmetic mean of digits of n appended to n, cf. A004427.

Original entry on oeis.org

0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 122, 132, 143, 153, 164, 174, 185, 195, 201, 212, 222, 233, 243, 254, 264, 275, 285, 296, 302, 312, 323, 333, 344, 354, 365, 375, 386, 396, 402, 413, 423, 434, 444, 455, 465, 476, 486, 497, 503, 513, 524, 534
Offset: 0

Views

Author

Reinhard Zumkeller, May 27 2010

Keywords

Comments

A010879(a(n)) = A004427(a(n)) = A004427(n);
a(A178358(n)) = A178358(a(n));
subsequence of A178403.

Examples

			For n=8379: A004427(n) = ceiling((8+3+7+9)/4) = 7; so a(8379) = 10*8379 + 7 = 83797.
		

Programs

  • Mathematica
    amd[n_]:=Module[{m=Ceiling[Mean[IntegerDigits[n]]]},n*10^IntegerLength[ m]+ m]; Array[amd,60,0] (* Harvey P. Dale, Aug 12 2015 *)

Formula

a(n) = A008592(n) + A004427(n).

A217562 Even numbers not divisible by 5.

Original entry on oeis.org

2, 4, 6, 8, 12, 14, 16, 18, 22, 24, 26, 28, 32, 34, 36, 38, 42, 44, 46, 48, 52, 54, 56, 58, 62, 64, 66, 68, 72, 74, 76, 78, 82, 84, 86, 88, 92, 94, 96, 98, 102, 104, 106, 108, 112, 114, 116, 118, 122, 124, 126, 128, 132
Offset: 1

Views

Author

Jeremy Gardiner, Oct 06 2012

Keywords

Comments

Numbers ending with 2,4,6,8 in base 10.
No term is divisible by 10 therefore a subsequence of A067251 (Numbers with no trailing zeros in decimal representation).
Union of this sequence with A005408 (The odd numbers) gives A067251.
Union of this sequence with A045572 (Numbers that are odd but not divisible by 5) gives A047201.
The even numbers divisible by 5 are A008592 (Multiples of 10).

Crossrefs

Programs

  • BASIC
    for n=1 to 199
    if n mod 5 <> 0 and n mod 2 <> 1 then print str$(n)+", ";
    next n
    print
    
  • Magma
    I:=[2, 4, 6, 8, 12]; [n le 5 select I[n] else Self(n-1) + Self(n-4) - Self(n-5): n in [1..60]]; // Vincenzo Librandi, Dec 28 2012
    
  • Mathematica
    CoefficientList[Series[2*(1 + x + x^2 + x^3 + x^4)/((1 + x)*(1 + x^2)*(x - 1)^2), {x, 0, 100}], x] (* Vincenzo Librandi, Dec 28 2012 *)
  • PARI
    A217562(n)=(n-1)*5\2+2 \\ M. F. Hasler, Oct 07 2012
    
  • Python
    def A217562(n): return (5*n-1>>1)&-2 # Chai Wah Wu, Apr 21 2025

Formula

a(n) = 2*A047201(n).
G.f.: 2*x*(1+x+x^2+x^3+x^4) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 06 2012
a(n) = 2*(n+floor((n-1)/4)). - Aaron J Grech, Sep 28 2024
E.g.f.: (4 - cos(x) + (5*x - 3)*cosh(x) + sin(x) + (5*x - 2)*sinh(x))/2. - Stefano Spezia, Sep 28 2024

A017270 a(n) = (10*n)^2.

Original entry on oeis.org

0, 100, 400, 900, 1600, 2500, 3600, 4900, 6400, 8100, 10000, 12100, 14400, 16900, 19600, 22500, 25600, 28900, 32400, 36100, 40000, 44100, 48400, 52900, 57600, 62500, 67600, 72900, 78400, 84100, 90000, 96100, 102400, 108900, 115600, 122500, 129600, 136900, 144400
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = a(n-1) + 200*n - 100, n > 0 ; a(0)=0. - Miquel Cerda, Oct 30 2016
G.f.: 100*x*(1 + x)/(1 - x)^3. - Ilya Gutkovskiy, Oct 30 2016
a(n) = 100*A000290(n). - Michel Marcus, Oct 30 2016
From Amiram Eldar, Jan 25 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/600.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/1200.
Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/10)/(Pi/10).
Product_{n>=1} (1 - 1/a(n)) = sin(Pi/10)/(Pi/10) = 5*(sqrt(5)-1)/(2*Pi). (End)
From Elmo R. Oliveira, Nov 30 2024: (Start)
E.g.f.: 100*x*(1 + x)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = A008592(n)^2 = A000290(A008592(n)) = A016850(2*n). (End)

A169669 (first digit of n) * (last digit of n) in decimal representation.

Original entry on oeis.org

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 0, 7, 14, 21, 28, 35, 42, 49, 56, 63, 0
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 05 2010

Keywords

Comments

a(n) = A000030(n)*A010879(n);
a(n) = A115300(n) for n<=100, A115300(101) = 0;
a(n) = A111707(n) for n<=109, A111707(110) = 1;
0 <= a(n) <= 81, range = A174995;
a(10*n + n mod 10) = a(n);
a(A008592(n)) = 0;
a(n) = a(A004086(n))*A168184(n);

Crossrefs

Programs

  • Haskell
    a169669 n = a000030 n * mod n 10
    -- Reinhard Zumkeller, Apr 29 2015
    
  • Python
    def a(n): return int(str(n)[0])*(n%10)
    print([a(n) for n in range(81)]) # Michael S. Branicky, Jul 13 2022

A190997 Product of digits of all the divisors of n.

Original entry on oeis.org

1, 2, 3, 8, 5, 36, 7, 64, 27, 0, 1, 288, 3, 56, 75, 384, 7, 2592, 9, 0, 42, 8, 6, 18432, 50, 72, 378, 3584, 18, 0, 3, 2304, 27, 168, 525, 373248, 21, 432, 243, 0, 4, 16128, 12, 512, 13500, 288, 28, 3538944, 252, 0, 105, 2880, 15, 725760, 125, 860160, 945
Offset: 1

Views

Author

Jaroslav Krizek, Jun 15 2011

Keywords

Comments

Product of digits of concatenation of all divisors of n (A037278).

Examples

			For n = 12: a(12) = 1 * 2 * 3 * 4 * 6 * 1 * 2 = 288.
		

Crossrefs

Programs

  • Maple
    A190997:=proc(n) local d, i, p: d:=numtheory[divisors](n): p:=1: for i from 1 to nops(d) do p:=p*mul(d, d=convert(d[i], base, 10)): od: return p: end: seq(A190997(n),n=1..57); # Nathaniel Johnston, Jun 15 2011
  • Mathematica
    Table[Times@@Flatten[IntegerDigits/@Divisors[n]],{n,100}] (* Harvey P. Dale, Nov 27 2022 *)
  • PARI
    a007954(n) = my(d=digits(n)); prod(i=1, #d, d[i]);
    a(n) = my(div=divisors(n), pdt=1); for(k=1, #div, pdt=pdt*a007954(div[k])); pdt \\ Felix Fröhlich, Sep 22 2016

Formula

a(n) = 0 for n = multiples of 10; a(A008592(n)) = 0 for n >=1.

A355223 The k-th rightmost digit of a(n) is the least of the k rightmost digits of n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 11, 12, 13, 14, 15, 16, 17, 18, 19, 0, 11, 22, 23, 24, 25, 26, 27, 28, 29, 0, 11, 22, 33, 34, 35, 36, 37, 38, 39, 0, 11, 22, 33, 44, 45, 46, 47, 48, 49, 0, 11, 22, 33, 44, 55, 56, 57, 58, 59, 0, 11, 22, 33, 44, 55, 66, 67, 68
Offset: 0

Views

Author

Rémy Sigrist, Jun 24 2022

Keywords

Comments

Leading zeros are ignored.

Examples

			For n = 1402:
- min({1, 4, 0, 2}) = 0,
- min({4, 0, 2}) = 0,
- min({0, 2}) = 0,
- min({2}) = 2,
- so a(1402) = 2.
		

Crossrefs

See A355221, A355222 and A355224 for similar sequences.
Cf. A008592, A009994 (fixed points), A135481 (binary analog).

Programs

  • PARI
    a(n, base=10) = { my (d=digits(n, base), m=oo); forstep (k=#d, 1, -1, d[k]=m=min(m, d[k])); fromdigits(d, base) }
    
  • Python
    def a(n):
        s, m = str(n), "9"
        return int("".join((m:=min(m, s[-1-k])) for k in range(len(s)))[::-1])
    print([a(n) for n in range(69)]) # Michael S. Branicky, Jun 24 2022
    
  • Python
    from itertools import accumulate
    def A355223(n): return int(''.join(accumulate(str(n)[::-1],func=min))[::-1]) # Chai Wah Wu, Jun 25 2022

Formula

a(n) <= n with equality iff n belongs to A009994.
a(a(n)) = a(n).
a(n) = 0 iff n is a multiple of 10.

A059632 Carryless product 11 X n base 10.

Original entry on oeis.org

0, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 121, 132, 143, 154, 165, 176, 187, 198, 109, 220, 231, 242, 253, 264, 275, 286, 297, 208, 219, 330, 341, 352, 363, 374, 385, 396, 307, 318, 329, 440, 451, 462, 473, 484, 495, 406, 417, 428, 439, 550, 561, 572, 583
Offset: 0

Views

Author

Henry Bottomley, Feb 19 2001

Keywords

Comments

a(n) <= 11*n; a(m) = 11*m iff m is a term of A039691. - Reinhard Zumkeller, Jul 05 2014

Examples

			a(19)=109 since we have 11 X 19 = carryless sum of 100, 90, 10 and 9 =109
		

Crossrefs

Cf. A001477 for carryless 1 X n, A004520 for carryless 2 X 10 base 10, A055120 for carryless 9 X n, A008592 for carryless 10 X n.
Cf. A048724 carryless 3Xn in base 2, A242399 carryless 4Xn in base 3.
Cf. A008593.

Programs

  • Haskell
    a059632 n = foldl (\v d -> 10 * v + d) 0 $
                      map (flip mod 10) $ zipWith (+) ([0] ++ ds) (ds ++ [0])
                where ds = map (read . return) $ show n
    -- Reinhard Zumkeller, Jul 05 2014

A069498 Triangular numbers of the form 10*k.

Original entry on oeis.org

0, 10, 120, 190, 210, 300, 630, 780, 820, 990, 1540, 1770, 1830, 2080, 2850, 3160, 3240, 3570, 4560, 4950, 5050, 5460, 6670, 7140, 7260, 7750, 9180, 9730, 9870, 10440, 12090, 12720, 12880, 13530, 15400, 16110, 16290, 17020, 19110, 19900, 20100, 20910, 23220
Offset: 1

Views

Author

Amarnath Murthy, Mar 30 2002

Keywords

Comments

Intersection of A000217 and A008592. - Michel Marcus, Sep 17 2013

Crossrefs

Programs

  • Maple
    a[0] := 0:a[1] := 4:a[2] := 15:a[3] := 19:seq((20*(floor(i/4))+a[i mod 4])*(20*(floor(i/4))+a[i mod 4]+1)/2,i=0..100);
  • Mathematica
    Select[Accumulate[Range[0,250]],Divisible[#,10]&] (* Harvey P. Dale, Aug 28 2016 *)

Formula

G.f.: -10*x^2*(x^6+11*x^5+7*x^4+2*x^3+7*x^2+11*x+1) / ((x-1)^3*(x+1)^2*(x^2+1)^2). - Colin Barker, Sep 23 2013

Extensions

Corrected and extended by Harvey P. Dale and Sascha Kurz, Mar 31 2002

A085315 Numbers such that first reversing digits and after forming its cube equals the result of first-form-cube and after-reverse operation with exclusion of cases divisible by 10.

Original entry on oeis.org

1, 2, 7, 11, 101, 111, 1001, 1011, 1101, 10001, 10011, 10101, 11001, 11011, 100001, 100011, 100101, 100111, 101001, 101011, 101101, 110001, 110011, 110101, 111001, 1000001, 1000011, 1000101, 1000111, 1001001, 1001011, 1001101, 1010001, 1010011, 1011001, 1100001, 1100011, 1100101, 1101001, 1110001
Offset: 1

Views

Author

Labos Elemer, Jul 01 2003

Keywords

Examples

			n=100111,rev[n]=111001, n^3=1003333697667631.
rev[n^3]=111001^3=1367667963333001=rev[n]^3.
		

Crossrefs

Programs

  • Maple
    r:= n-> (s-> parse(cat(seq(s[-i], i=1..length(s)))))(""||n):
    q:= n-> irem(n, 10)>0 and r(n^3)=r(n)^3:
    select(q, [$1..2000000])[];  # Alois P. Heinz, Oct 22 2021
  • Mathematica
    nd[x_, y_] := 10*x+y; tn[x_] := Fold[nd, 0, x] rt[x_] := tn[Reverse[IntegerDigits[x]]] Do[s=rt[n^3]; s1=rt[n]^3; If[Equal[s, s1]&& !Equal[Mod[n, 10], 0], k=k+1; Print[n]], {n, 1, 10000000}]; k

Formula

Solutions to rev[x^3]=rev[x]^3 without numbers divisible by 10.
{ A069494 } minus { A008592 }. - Alois P. Heinz, Oct 22 2021

A158814 Multiples of 10 in the EKG sequence A064413.

Original entry on oeis.org

10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 350, 340, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570
Offset: 1

Views

Author

Paul Curtz, Mar 27 2009

Keywords

Comments

The first 33 terms are regular, as in A008592.
The multiples of 1 is A064413 itself. The multiples of 2 is A064469. The multiples of 3 are 3*A155963(n).
The first 15 multiples of 4 are 4*A115510, but then become different. The multiples of 5 are A158486,
also represented by A158504. The first 85 multiples of 6 coincide with A008588(1..85), then deviate.
The first 56 multiples of 9 are A008591(1..56), and then deviate. Multiples of 13 are in A158605.

Extensions

Edited and extended by R. J. Mathar, Apr 04 2009
Corrected by Paul Curtz, Apr 17 2009
Previous Showing 31-40 of 93 results. Next