cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A250125 Coordination sequence of point of type 3.4.3.12 in 4-uniform tiling {3.3.4.3.4; 3.3.4.12; 3.3.12.4; 3.4.3.12}.

Original entry on oeis.org

1, 4, 6, 11, 13, 15, 23, 23, 33, 30, 33, 42, 41, 54, 46, 54, 58, 58, 73, 64, 75, 74, 79, 89, 81, 94, 92, 100, 105, 102, 110, 109, 119, 123, 123, 126, 130, 135, 140, 142, 144, 151, 151, 161, 158, 161, 170, 169, 182, 174, 182, 186, 186, 201, 192, 203, 202, 207, 217
Offset: 0

Views

Author

N. J. A. Sloane, Nov 29 2014

Keywords

Comments

This tiling appears as an example in Connelly et al. (2014), Fig. 6 (the heavy black lines in the figures here are an artifact from that figure).
For the definition of k-uniform tiling see Section 2.2 of Chapter 2 of Grünbaum and Shephard (1987).

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987.

Crossrefs

List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706(3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).

Formula

Empirical g.f.: -(x^17 +x^16 +x^15 +x^14 -2*x^13 -4*x^12 -6*x^11 -7*x^10 -11*x^9 -18*x^8 -16*x^7 -19*x^6 -14*x^5 -13*x^4 -11*x^3 -6*x^2 -4*x -1) / ((x -1)^2*(x^4 +x^3 +x^2 +x +1)*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)). - Colin Barker, Dec 02 2014

Extensions

Galebach link from Joseph Myers, Nov 30 2014
Extended by Joseph Myers, Dec 02 2014

A250126 Coordination sequence of point of type 3.3.4.12 in 4-uniform tiling {3.3.4.3.4; 3.3.4.12; 3.3.12.4; 3.4.3.12}.

Original entry on oeis.org

1, 4, 9, 9, 12, 19, 21, 28, 27, 31, 38, 40, 48, 44, 49, 56, 57, 67, 63, 69, 73, 75, 85, 80, 88, 92, 95, 102, 98, 106, 109, 114, 121, 118, 123, 127, 132, 138, 137, 142, 147, 149, 156, 155, 159, 166, 168, 176, 172, 177, 184, 185, 195, 191, 197, 201, 203, 213, 208
Offset: 0

Views

Author

N. J. A. Sloane, Nov 29 2014

Keywords

Comments

This tiling appears as an example in Connelly et al. (2014), Fig. 6 (the heavy black lines in the figures here are an artifact from that figure).
For the definition of k-uniform tiling see Section 2.2 of Chapter 2 of Grünbaum and Shephard (1987).

References

  • Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987.

Crossrefs

List of coordination sequences for uniform planar nets: A008458 (the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706(3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120 (3.3.3.3.6), A250122 (3.12.12).

Formula

Empirical g.f.: -(2*x^16 +x^14 -2*x^12 -7*x^11 -10*x^10 -10*x^9 -14*x^8 -18*x^7 -17*x^6 -18*x^5 -12*x^4 -9*x^3 -9*x^2 -4*x -1) / ((x -1)^2*(x^4 +x^3 +x^2 +x +1)*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)). - Colin Barker, Dec 02 2014

Extensions

Galebach link from Joseph Myers, Nov 30 2014
Extended by Joseph Myers, Dec 02 2014

A071910 a(n) = t(n)*t(n+1)*t(n+2), where t() are the triangular numbers.

Original entry on oeis.org

0, 18, 180, 900, 3150, 8820, 21168, 45360, 89100, 163350, 283140, 468468, 745290, 1146600, 1713600, 2496960, 3558168, 4970970, 6822900, 9216900, 12273030, 16130268, 20948400, 26910000, 34222500, 43120350, 53867268, 66758580, 82123650, 100328400, 121777920
Offset: 0

Views

Author

N. J. A. Sloane, Jun 13 2002

Keywords

Comments

a(n) is also the number of three-dimensional cage assemblies such that the assembly is not a cube. See also A052149 for the two-dimensional version and to A059827 for the non-exclusive version. - Alejandro Rodriguez, Oct 20 2020

Crossrefs

Cf. A006542, (first differences of a(n) /18) A006414, (second differences of a(n) /18) A006322, (third differences of a(n) /18) A004068, (fourth differences of a(n) /18) A005891, (fifth differences of a(n) /18) A008706.

Programs

  • Mathematica
    Join[{0},Times@@@Partition[Accumulate[Range[40]],3,1]] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,18,180,900,3150,8820,21168},40] (* Harvey P. Dale, Aug 08 2025 *)
  • PARI
    t(n) = n*(n+1)/2;
    a(n) = t(n)*t(n+1)*t(n+2); \\ Michel Marcus, Oct 21 2015

Formula

a(n) = 18*A006542(n+3). - Vladeta Jovovic, Jun 14 2002
G.f.: 18*x*(1+3*x+x^2)/(1-x)^7. - Vladeta Jovovic, Jun 14 2002
a(n) = ((n+1)*(n+2))^3/8 - Sum_{i=1..n+1} i^3. - Jon Perry, Feb 13 2004
a(n) = C(2+n, n)*C(3+n, 1+n)*C(4+n, 2+n). - Zerinvary Lajos, Jul 29 2005
a(n) = A059827(n+1) - A000537(n+1). - Michel Marcus, Oct 21 2015

A086460 Square array read by antidiagonals: T(n,k)=nk+0^n.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 4, 3, 0, 1, 4, 6, 6, 4, 0, 1, 5, 8, 9, 8, 5, 0, 1, 6, 10, 12, 12, 10, 6, 0, 1, 7, 12, 15, 16, 15, 12, 7, 0, 1, 8, 14, 18, 20, 20, 18, 14, 8, 0, 1, 9, 16, 21, 24, 25, 24, 21, 16, 9, 0, 1, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 0, 1, 11, 20, 27, 32, 35, 36
Offset: 0

Views

Author

Paul Barry, Jul 21 2003

Keywords

Comments

Rows include A028310, A004277, A008486, A008574, A008706, A008458. Main diagonal is n^2+0^n (A000290, preceded by extra 1). Inverse binomial transform of array A049513.

Examples

			Rows begin
1 0 0 0 0 ...
1 1 2 3 4 ...
1 2 4 6 8 ...
1 3 6 9 12 ...
1 4 8 12 16 ...
		

Formula

T(n, k)=nk+0^n

A242941 a(n) is the number of convex uniform tessellations in dimension n.

Original entry on oeis.org

1, 11, 28, 143
Offset: 1

Views

Author

Felix Fröhlich, May 27 2014

Keywords

Comments

Terms for n > 4 have not been determined so far. Alfredo Andreini in 1905 gave a value of 25 for a(3), later found to be incorrect. The value 28 for a(3) was given by Norman Johnson in 1991 and later in 1994 independently by Branko Grünbaum. The value for a(4) was given by George Olshevsky in 2006.
Deza and Shtogrin (2000) agree that the value of a(3) is 28, although the authors do not provide a proof. - Felix Fröhlich, Nov 29 2014
From Felix Fröhlich, Feb 03 2019: (Start)
The 11 convex uniform tilings are all illustrated in Kepler, 1619. For an argument that exactly 11 such tilings exist, see Grünbaum, Shephard, 1977.
In dimension 2, the definition of "uniform polytope" usually seems to be equivalent to the regular polygons in order to exclude polygons that alternate two different edge-lengths. Applying this principle retroactively to dimension 1 (as done, as I assume, by Coxeter, see Coxeter, 1973, p. 129) yields a(1) = 1. (End)

References

  • H. S. M. Coxeter, Regular Polytopes, Third Edition, Dover Publications, 1973, ISBN 9780486614809.
  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, Vol. 4, No. 2 (1994), 49-56.
  • N. W. Johnson, Uniform Polytopes, [To appear, cf. Weiss, Stehle, 2017].

Crossrefs

Cf. A068599.
List of coordination sequences for the 11 uniform 2D tilings: A008458(the planar net 3.3.3.3.3.3), A008486 (6^3), A008574 (4.4.4.4 and 3.4.6.4), A008576 (4.8.8), A008579 (3.6.3.6), A008706(3.3.3.4.4), A072154 (4.6.12), A219529 (3.3.4.3.4), A250120(3.3.3.3.6), A250122 (3.12.12).
List of coordination sequences for the 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Extensions

Edited by N. J. A. Sloane, Feb 15 2018
Edited by Felix Fröhlich, Feb 03-10 2019

A086461 Symmetric version of square array A086460.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 4, 3, 1, 1, 4, 6, 6, 4, 1, 1, 5, 8, 9, 8, 5, 1, 1, 6, 10, 12, 12, 10, 6, 1, 1, 7, 12, 15, 16, 15, 12, 7, 1, 1, 8, 14, 18, 20, 20, 18, 14, 8, 1, 1, 9, 16, 21, 24, 25, 24, 21, 16, 9, 1, 1, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10, 1, 1, 11, 20, 27, 32, 35, 36
Offset: 0

Views

Author

Paul Barry, Jul 21 2003

Keywords

Comments

Rows include A028310, A004277, A008486, A008574, A008706, A008458. Main diagonal is n^2+0^n (A000290, preceded by extra 1).

Examples

			Rows begin
  1 1 1 1 1 ...
  1 1 2 3 4 ...
  1 2 4 6 8 ...
  1 3 6 9 12 ...
  1 4 8 12 16 ...
As a triangle:
  {1},
  {1, 1},
  {1, 1, 1},
  {1, 2, 2, 1},
  {1, 3, 4, 3, 1},
  {1, 4, 6, 6, 4, 1},
  {1, 5, 8, 9, 8, 5, 1},
  {1, 6, 10, 12, 12, 10, 6, 1},
  {1, 7, 12, 15, 16, 15, 12, 7, 1},
  {1, 8, 14, 18, 20, 20, 18, 14, 8, 1},
  {1, 9, 16, 21, 24, 25, 24, 21, 16, 9, 1}
		

Programs

  • Mathematica
    t[n_, m_] = If[ n == 0 || n == m || m == 0, 1, n - m]*If[n == m || n == 0 || m == 0, 1, m]; Table[t[n, m], {n, 0, 11}, {m, 0, n}] // Flatten (* Roger L. Bagula, Sep 06 2008 *)

Formula

T(0, k)=T(n, 0)=1, T(n, k)=nk+0^n, n, k>0
Alternatively, triangle read by rows with formula t(n,m)=If[n == 0 || n == m || m == 0, 1, n - m]*If[n == m || n == 0 || m == 0, 1, m]. - Roger L. Bagula, Sep 06 2008

A263573 Intersection of A024365 and A129912.

Original entry on oeis.org

6, 30, 60, 180, 210, 2310, 4620, 60060, 510510, 10810800, 116396280, 200560490130, 401120980260
Offset: 1

Views

Author

Bill McEachen, Oct 21 2015

Keywords

Comments

The two sequences involve areas of primitive Pythagorean triples and primorial products. Intersections are only considered once (no repeats). Conjecture: the sequence is infinite.
Conjecture: The next two entries are a(12) = 200560490130, a(13) = 401120980260.
From G. C. Greubel, Dec 29 2015: (Start)
6|a(n) for n>=1,
30|a(n) for n>=2,
a(n)/6 = {1, 5, 10, 30, 35, 385, 770, 10010, ...} is a subset of values found in A008706.
(End)
a(12) and a(13) confirmed. a(14) > 2*10^31, if it exists. - Giovanni Resta, Mar 31 2017

Examples

			A024365 begins {6, 30, 60, 84, 180, 210, 210, 330, 504, 546, 630, 840, 924, 990, 1224, 1320, 1386, 1560, 1710, 1716, 2310, ...}.
A129912 begins {1, 2, 6, 12, 30, 60, 180, 210, 360, 420, 1260, 2310, 2520, ...}.
So, common entries encountered are {6, 30, 60, 180, 210, 2310, ...}.
Specifically, we see that A024365(1) = A129912(3), A024365(2) = A129912(5), A024365(3) = A129912(6), A024365(5) = A129912(7).
These are then the first four entries of the sequence (6, 30, 60, 180).
		

Crossrefs

Programs

  • Mathematica
    s = 6 Take[Sort[(Times @@ #)/12 & /@ ({Times @@ #, (Last[#]^2 - First[#]^2)/2} & /@ Select[Subsets[Range[1, 3600, 2], {2}], GCD @@ # == 1 &])], 1800]; f[m_] := f[m] = Union[Times @@@ Subsets[FoldList[Times, 1, Prime[Range[m]]]]][[1 ;; 100]]; f[10]; f[m = 11]; While[f[m] != f[m - 1], m++]; t = f[m]; Intersection[s, t] (* Michael De Vlieger, Oct 22 2015, after Harvey P. Dale at A020885 and Jean-François Alcover at A129912 *) (* or *)
    ok[n_] := Block[{a, f = Power @@@ FactorInteger[2 n]}, SelectFirst[ Subsets[f, {1, Floor[ Length[f]/2]}], (a = Times @@ #; IntegerQ@ Sqrt[a^2 + (2 n/a)^2]) &, {}] != {}]; pr[n_] := Product[ Prime[n+1-i]^i, {i, n}];  upto[mx_] := Block[{ric, j=1}, ric[n_, ip_, ex_] := If[n < mx, Block[{p = Prime[ip + 1]}, If[ex == 1 && ok[n], Sow@ n]; ric[n p^ex, ip + 1, ex]; If[ex > 1, ric[n p^(ex - 1), ip+1, ex-1]]]]; Sort@ Reap[ While[pr[j] < mx, ric[2^j, 1, j]; j++]][[2, 1]]]; upto[10^12] (* much faster, Giovanni Resta, Mar 31 2017 *)
  • PARI
    \\note: code does not generate the sequence, just checks for a matching PPT entry
    genit(area)={myMax=floor(sqrt(2*area));i5=myMax;endless=0;soln=List();
    while(i5>=2,dun=0;j=2.*myVal/i5; k=floor(j); if(j>k, dun=1 );if(dun<1,
    c=sqrt(i5^2 + k^2);w=floor(c);if(c>w,dun=1); if(dun<1,if(gcd(k,i5)>1,dun=1 ));
    if(dun<1,listput(soln,k); listput(soln,i5);listput(soln,w);listsort(soln);
    print("soln a,b,c = ", soln[1],"  ",soln[2],"  ",soln[3] );dun=2;break ));
    i5--;endless++);if(i5<=2&&dun<1,print("no solution ") );if(i5>2&&dun<2,
    print("max iteration limit was hit ",endless) );print (endless);}
    (C++)
    #include 
    #include 
    using namespace std;
    int main(){ifstream fin1,fin2;
    int myValue,myValue2,ptr,fptr,i5,j5;
    unsigned long list1[9999]={0};
    unsigned long list2[999]={0};
    unsigned long final[31]={0};
    fin1.open("A024365.txt"); fin2.open("A129912.txt");
    ptr=1;
    while(ptr<9999)
    {fin1>> myValue;fin1.get();list1[ptr]=myValue;
        if(ptr<999)
           {fin2>> myValue2;fin2.get();list2[ptr]=myValue2;}
        ptr++;}
    fin1.close();fin2.close();fptr=1;
    for(i5=1;i5<9990;i5++)
    {for(j5=1;j5<999;j5++){
    if(list1[i5]==list2[j5] )
    {
        fptr++;
        if(fptr>30){break;}
        final[fptr]=list1[i5];
        cout << final[fptr] << ",";
        break;
    }}if(fptr>30){break;}}}

Extensions

a(12)-a(13) from Giovanni Resta, Mar 31 2017
Previous Showing 21-27 of 27 results.