cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 112 results. Next

A336615 Numbers of the form p * m^2, where p is prime and m > 0 is not divisible by p.

Original entry on oeis.org

2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 20, 23, 28, 29, 31, 37, 41, 43, 44, 45, 47, 48, 50, 52, 53, 59, 61, 63, 67, 68, 71, 73, 75, 76, 79, 80, 83, 89, 92, 97, 98, 99, 101, 103, 107, 109, 112, 113, 116, 117, 124, 127, 131, 137, 139, 147, 148, 149, 151, 153, 157, 162
Offset: 1

Views

Author

Amiram Eldar, Jul 27 2020

Keywords

Comments

Numbers k such that A008833(k) is a unitary divisor of k and A007913(k) = k / A008833(k) is a prime number.

Crossrefs

Intersection of A229125 and A335275.
Subsequences: A000040, A054753, A179643.

Programs

  • Mathematica
    Select[Range[2, 200], Select[FactorInteger[#][[;;, 2]], OddQ] == {1} &]
  • Python
    from math import isqrt
    from sympy import primepi, primefactors
    def A336615(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(m:=x//y**2)-sum(1 for p in primefactors(y) if p<=m) for y in range(1,isqrt(x)+1))
        return bisection(f,n,n) # Chai Wah Wu, Jan 30 2025

Formula

The number of terms not exceeding x is (Pi^2/6) * x/log(x) + O(x/(log(x))^2) (Cohen, 1962).

A336644 a(n) = (n-rad(n)) / core(n), where rad(n) and core(n) give the squarefree kernel and squarefree part of n, respectively.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 3, 6, 0, 0, 2, 0, 0, 0, 14, 0, 6, 0, 2, 0, 0, 0, 3, 20, 0, 8, 2, 0, 0, 0, 15, 0, 0, 0, 30, 0, 0, 0, 3, 0, 0, 0, 2, 6, 0, 0, 14, 42, 20, 0, 2, 0, 8, 0, 3, 0, 0, 0, 2, 0, 0, 6, 62, 0, 0, 0, 2, 0, 0, 0, 33, 0, 0, 20, 2, 0, 0, 0, 14, 78, 0, 0, 2, 0, 0, 0, 3, 0, 6, 0, 2, 0, 0, 0, 15, 0, 42, 6, 90, 0, 0, 0, 3, 0
Offset: 1

Views

Author

Antti Karttunen, Jul 28 2020

Keywords

Crossrefs

Programs

  • PARI
    A336644(n) = ((n-factorback(factorint(n)[, 1])) / core(n));
    
  • Python
    from math import prod
    from sympy.ntheory.factor_ import primefactors, core
    def A336644(n): return (n-prod(primefactors(n)))//core(n) # Chai Wah Wu, Dec 30 2021

Formula

a(n) = A066503(n) / A007913(n) = (n-A007947(n)) / A007913(n).
a(n) = A008833(n) - A336643(n).

A365332 The sum of divisors of the largest square dividing n.

Original entry on oeis.org

1, 1, 1, 7, 1, 1, 1, 7, 13, 1, 1, 7, 1, 1, 1, 31, 1, 13, 1, 7, 1, 1, 1, 7, 31, 1, 13, 7, 1, 1, 1, 31, 1, 1, 1, 91, 1, 1, 1, 7, 1, 1, 1, 7, 13, 1, 1, 31, 57, 31, 1, 7, 1, 13, 1, 7, 1, 1, 1, 7, 1, 1, 13, 127, 1, 1, 1, 7, 1, 1, 1, 91, 1, 1, 31, 7, 1, 1, 1, 31, 121
Offset: 1

Views

Author

Amiram Eldar, Sep 01 2023

Keywords

Comments

All the terms are odd.
The number of these divisors is A365331(n).
The sum of divisors of the square root of the largest square dividing n is A069290(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1 - Mod[e, 2]) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(f[i,2] + 1 - f[i,2]%2) - 1)/(f[i,1] - 1));}

Formula

a(n) = A000203(A008833(n)).
a(n) = 1 if and only if n is squarefree (A005117).
Multiplicative with a(p^e) = (p^(e + 1 - (e mod 2)) - 1)/(p - 1).
Dirichlet g.f.: zeta(s) * zeta(2*s-1) * zeta(2*s-2) / zeta(4*s-2).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = 5*zeta(3/2)/Pi^2 = 1.323444812234... .

A365333 The number of exponentially odd coreful divisors of the largest square dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 01 2023

Keywords

Comments

First differs from A043289, A053164, A063775, A203640 and A295658 at n = 64.
The number of squares dividing the largest exponentially odd divisor of n is A325837(n).
The sum of the exponentially odd divisors of the largest square dividing n is A365334(n). [corrected, Sep 08 2023]
The number of exponentially odd divisors of the largest square dividing n is the same as the number of squares dividing n, A046951(n). - Amiram Eldar, Sep 08 2023

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Max[1, Floor[e/2]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> max(1, x\2), factor(n)[, 2]));

Formula

a(n) = A325837(A008833(n)).
a(n) = 1 if and only if n is a biquadratefree number (A046100).
Multiplicative with a(p^e) = max(1, floor(e/2)).
Dirichlet g.f.: zeta(s) * zeta(4*s) * zeta(6*s) / zeta(12*s).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 15015/(1382*Pi^2) = 1.100823... .

Extensions

Name corrected by Amiram Eldar, Sep 08 2023

A366524 Largest square divisor of n which is < sqrt(n), for n >= 2; a(1) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 9, 1, 4, 1, 1, 1, 4, 1, 1, 9, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Last[Select[Divisors[n], # < Sqrt[n] && IntegerQ[Sqrt[#]] &]], {n, 2, 100}]]
  • PARI
    a(n) = {my(m=1); fordiv(sqrtint(n/core(n)), d, if(d^4 < n, m=max(m,d))); m^2} \\ Andrew Howroyd, Oct 11 2023

A366765 The largest divisor of n that have no exponent 2 in their prime factorization.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 8, 3, 10, 11, 6, 13, 14, 15, 16, 17, 6, 19, 10, 21, 22, 23, 24, 5, 26, 27, 14, 29, 30, 31, 32, 33, 34, 35, 6, 37, 38, 39, 40, 41, 42, 43, 22, 15, 46, 47, 48, 7, 10, 51, 26, 53, 54, 55, 56, 57, 58, 59, 30, 61, 62, 21, 64, 65, 66, 67, 34, 69
Offset: 1

Views

Author

Amiram Eldar, Oct 21 2023

Keywords

Comments

The largest term of A337050 that divides n.
The number of these divisors is A366763(n), and their sum is A366764(n).

Crossrefs

Similar sequences: A055231, A057521, A008833, A350390.

Programs

  • Mathematica
    f[p_, e_] := p^If[e < 3, 1, e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1] ^ if(f[i, 2] < 3, 1, f[i, 2]));}

Formula

Multiplicative with a(p^e) = p if e <= 2 and p^e otherwise.
a(n) <= n, with equality if and only if n is in A337050.
Dirichlet g.f.: zeta(s-1) * Product_{p prime} (1 - 1/p^(2*s-2) + 1/p^(2*s-1) + 1/p^(3*s-3) - 1/p^(3*s-2)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 - 1/p^2 + 2/p^3 - 1/p^4) = 0.83234421330425224469... .

A367418 The exponentially odd numbers (A268335) divided by their squarefree kernels (A007947).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 9, 1, 1, 1, 16, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 9, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 16, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1
Offset: 1

Views

Author

Amiram Eldar, Nov 17 2023

Keywords

Comments

Analogous to A102631, with the exponentially odd numbers instead of the square numbers (A000290).
All the terms are square numbers.

Crossrefs

Programs

  • Mathematica
    s[n_] := n / Times @@ FactorInteger[n][[;; , 1]]; s /@ Select[Range[200], AllTrue[FactorInteger[#][[;; , 2]], OddQ] &]
  • PARI
    b(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2]%2, f[i, 1]^(f[i, 2]-1), 0)); }
    lista(kmax) = {my(b1); for(k = 1, kmax, b1 = b(k); if(b1 > 0, print1(b1, ", "))); }

Formula

a(n) = A003557(A268335(n)).
a(n) = A268335(n)/A367417(n).
a(n) = A367419(n)^2.
a(n) = A268335(n)^2/A367406(n).
a(n) = A008833(A268335(n)). - Amiram Eldar, Nov 30 2023

A055210 Sum of totients of square divisors of n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 7, 1, 1, 3, 1, 1, 1, 11, 1, 7, 1, 3, 1, 1, 1, 3, 21, 1, 7, 3, 1, 1, 1, 11, 1, 1, 1, 21, 1, 1, 1, 3, 1, 1, 1, 3, 7, 1, 1, 11, 43, 21, 1, 3, 1, 7, 1, 3, 1, 1, 1, 3, 1, 1, 7, 43, 1, 1, 1, 3, 1, 1, 1, 21, 1, 1, 21, 3, 1, 1, 1, 11, 61, 1, 1, 3, 1, 1, 1, 3, 1, 7, 1, 3, 1, 1, 1, 11, 1
Offset: 1

Views

Author

Labos Elemer, Jun 19 2000

Keywords

Examples

			n = 400: its square divisors are {1, 4, 16, 25, 100, 400}, their totients are {1, 2, 8, 20, 40, 160} and the totient-sum over these divisors is, so a(400) = 231. This value arises at special squarefree multiples of 400 (400 times 2, 3, 5, 6, 7, 10, 11, 13, 15, 17, 19, 21, 22, 23 etc).
a(400) = a(2^4*5^2) = (2^5 + 1)/3*(5^3 + 1)/6 = 231.
		

Crossrefs

Programs

  • Magma
    [&+[EulerPhi(d):d in Divisors(n)| IsSquare(d)]: n in [1..100]]; // Marius A. Burtea, Oct 14 2019
  • Mathematica
    Array[DivisorSum[#, EulerPhi, IntegerQ@ Sqrt@ # &] &, 97] (* Michael De Vlieger, Nov 18 2017 *)
    f[p_, e_] := If[EvenQ[e], (p^(e + 1) + 1)/(p + 1), (p^e + 1)/(p + 1)]; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Dec 09 2020 *)
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d)*issquare(d)); \\ Michel Marcus, Dec 31 2013
    

Formula

a(n) = Sum_{d is square and divides n} phi(d).
Multiplicative with a(p^e) = (p^(e+1)+1)/(p+1) for even e and a(p^e) = (p^e+1)/(p+1) for odd e. - Vladeta Jovovic, Dec 01 2001
a(n) = Sum_{d|n} A010052(d)*A000010(d). - Antti Karttunen, Nov 18 2017
Conjecture: a(n) = sigma_2(n/core(n))/sigma_1(n/core(n)) = A001157(A008833(n))/A000203(A008833(n)) for all n > 0. - Velin Yanev, Oct 13 2019
G.f.: Sum_{k>=1} k * phi(k) * x^(k^2) / (1 - x^(k^2)). - Ilya Gutkovskiy, Aug 20 2021
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = zeta(3/2)/(3*zeta(2)) = 0.529377... . - Amiram Eldar, Nov 13 2022

A055491 Smallest square divisible by n divided by largest square which divides n.

Original entry on oeis.org

1, 4, 9, 1, 25, 36, 49, 4, 1, 100, 121, 9, 169, 196, 225, 1, 289, 4, 361, 25, 441, 484, 529, 36, 1, 676, 9, 49, 841, 900, 961, 4, 1089, 1156, 1225, 1, 1369, 1444, 1521, 100, 1681, 1764, 1849, 121, 25, 2116, 2209, 9, 1, 4, 2601, 169, 2809, 36, 3025, 196, 3249, 3364
Offset: 1

Views

Author

Henry Bottomley, Jun 28 2000

Keywords

Examples

			a(12) = 36/4 = 9.
		

Crossrefs

Programs

  • Haskell
    a055491 = (^ 2) . a007913  -- Reinhard Zumkeller, Jul 23 2014
    
  • Mathematica
    With[{sqs=Range[100]^2},Table[SelectFirst[sqs,Divisible[#,n]&]/ SelectFirst[ Reverse[sqs],Divisible[n,#]&],{n,60}]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Feb 18 2018 *)
    f[p_, e_] := p^(2 * Mod[e, 2]); a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 07 2020 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^(2*(f[i,2]%2)));} \\ Amiram Eldar, Oct 27 2022

Formula

If n is written as Product(Pj^Ej) then a(n) = Product(Pj^(2*(Ej mod 2))).
a(n) = A053143(n)/A008833(n) = A007913(n)^2 = (A019554(n)/A000188(n))^2 = A000290(n)/A008833(n)^2.
Sum_{k=1..n} a(k) ~ c * n^3, where c = (zeta(6)/(3*zeta(2))) = 2*Pi^4/945 = 0.206156... . - Amiram Eldar, Oct 27 2022
Dirichlet g.f.: zeta(s-2) * zeta(2*s) / zeta(2*s-4). - Amiram Eldar, Sep 16 2023

A056194 Characteristic cube divisor of n!: a(n) = A056191(n!).

Original entry on oeis.org

1, 1, 1, 8, 8, 1, 1, 8, 8, 1, 1, 27, 27, 216, 1000, 1000, 1000, 125, 125, 1, 9261, 74088, 74088, 343, 343, 2744, 74088, 216, 216, 125, 125, 1000, 35937000, 4492125, 12326391, 12326391, 12326391, 98611128, 8024024008, 125375375125
Offset: 1

Views

Author

Labos Elemer, Aug 02 2000

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e] && e > 1, p^3, 1]; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 40] (* Amiram Eldar, Sep 06 2020 *)

Formula

a(n) = A056191(A000142(n)). - Amiram Eldar, Sep 06 2020
Previous Showing 71-80 of 112 results. Next