cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A071552 a(n) = (10n)!/n!^10.

Original entry on oeis.org

1, 3628800, 2375880867360000, 4386797336285844480000000, 12868639981414579848070084500000000, 49120458506088132224064306071170476903628800
Offset: 0

Views

Author

Benoit Cloitre, May 30 2002

Keywords

Crossrefs

Sequences (k*n)!/n!^k: A000984 (k = 2), A006480 (k = 3), A008977 (k = 4), A008978 (k = 5), A008979 (k = 6), A071549 (k = 7), A071550 (k = 8), A071551 (k = 9).

Programs

  • Magma
    [Factorial(10*n)/Factorial(n)^10: n in [0..20]]; // Vincenzo Librandi, Aug 13 2014
  • Mathematica
    Table[(10n)!/(n)!^10, {n, 0, 20}] (* Vincenzo Librandi, Aug 13 2014 *)

A089659 a(n) = S1(n,2), where S1(n, t) = Sum_{k=0..n} (k^t * Sum_{j=0..k} binomial(n,j)).

Original entry on oeis.org

0, 2, 19, 104, 440, 1600, 5264, 16128, 46848, 130560, 352000, 923648, 2369536, 5963776, 14766080, 36044800, 86900736, 207224832, 489357312, 1145569280, 2660761600, 6136266752, 14060355584, 32027705344, 72561459200, 163577856000, 367068708864, 820204535808
Offset: 0

Views

Author

N. J. A. Sloane, Jan 04 2004

Keywords

Crossrefs

Sequences of S1(n, t): A001792 (t=0), A089658 (t=1), this sequence (t=2), A089660 (t=3), A089661 (t=4), A089662 (t=5), A089663 (t=6).

Programs

  • Magma
    I:=[0,2,19,104]; [n le 4 select I[n] else 8*Self(n-1)-24*Self(n-2)+32*Self(n-3)-16*Self(n-4): n in [1..41]]; // Vincenzo Librandi, Jun 22 2016
    
  • Mathematica
    LinearRecurrence[{8,-24,32,-16}, {0,2,19,104}, 40] (* Vincenzo Librandi, Jun 22 2016 *)
  • SageMath
    [2^(n-3)*n*(7*n^2 + 12*n + 5)/3 for n in (0..40)] # G. C. Greubel, May 24 2022

Formula

a(n) = 2^(n-3)*n*(7*n^2 + 12*n + 5)/3. (see Wang and Zhang p. 333)
From Chai Wah Wu, Jun 21 2016: (Start)
a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4) for n > 3.
G.f.: x*(2 + 3*x)/(1 - 2*x)^4. (End)
E.g.f.: x*(12 + 33*x + 14*x^2)*exp(2*x)/6. - Ilya Gutkovskiy, Jun 21 2016

A322252 a(0) = 1 and a(n) = (5*n)!/(5!*n!^5) for n > 0.

Original entry on oeis.org

1, 1, 945, 1401400, 2546168625, 5194672859376, 11423951396577720, 26478825654361766400, 63805953776276649848625, 158421985022100255941485000, 402789797982510165934296910320, 1044048983553856888083223814102400, 2749848597736878877579660426025283000
Offset: 0

Views

Author

Seiichi Manyama, Nov 30 2018

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [Factorial(5*n)/(120*Factorial(n)^5):n in [1..12]]; // Marius A. Burtea, Feb 18 2020
  • Mathematica
    a[n_]:=(5*n)!/(5!*n!^5); Array[a, 20] (* or *) CoefficientList[Series[HypergeometricPFQ[{1/5, 2/5, 3/5, 4/5}, {1, 1, 1}, 3125 x]/(120 x) , {x, 0, 20}], x] (* Stefano Spezia, Dec 01 2018 *)

Formula

O.g.f.: F({1/5, 2/5, 3/5, 4/5}, {1, 1, 1}, 3125*x)/(120*x), where F is the generalized hypergeometric function. - Stefano Spezia, Dec 01 2018
a(n) = (1/5!)*A008978(n) for n >= 1. - Peter Bala, Feb 18 2020

A352651 a(n) = ( binomial(5*n,2*n)*binomial(5*n/2,2*n)*binomial(2*n,n)^2 ) / binomial(5*n/2,n)^2.

Original entry on oeis.org

1, 12, 378, 14700, 629850, 28540512, 1341310320, 64676424384, 3178603964250, 158529793422000, 7999466594747628, 407514796591710600, 20924507330066816112, 1081581197431986720000, 56225684939117297889600, 2937292879652230377427200, 154108110471294720105987930
Offset: 0

Views

Author

Peter Bala, Mar 25 2022

Keywords

Comments

We write x! as shorthand for Gamma(x+1) and binomial(x,y) as shorthand for x!/(y!*(x-y)!) = Gamma(x+1)/(Gamma(y+1)*Gamma(x-y+1)). Given two sequences of numbers c = (c_1, c_2, ..., c_K) and d = (d_1, d_2, ..., d_L) where c_1 + ... + c_K = d_1 + ... + d_L we can define the factorial ratio sequence u_n(c, d) = (c_1*n)!*(c_2*n)!* ... *(c_K*n)!/ ( (d_1*n)!*(d_2*n)!* ... *(d_L*n)! ) and ask whether it is integral for all n >= 0. The integer L - K is called the height of the sequence. Bober completed the classification of integral factorial ratio sequences of height 1. Soundararajan gives many examples of two-parameter families of integral factorial ratio sequences of height 2.
It is usually assumed that the c's and d's are integers but here we allow for some of the c's and d's to be rational numbers. See A276098 and the cross references for further examples of this type.
Conjecture: the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and positive integers n and k. The case n = k = 1 is easily proved.
More generally, for an integer N not equal to 0 or 1, the height 2 factorial ratio sequence whose n-th term is given by ( binomial(N*n,2*n)* binomial(N*n/2,2*n)* binomial(2*n,n)^2 )/binomial(N*n/2,n)^2 is conjectured to be integral and satisfy the same supercongruences. This is the case N = 5. See A352652 (N = 7)

Examples

			Examples of supercongruences:
a(2*7) - a(2) = 56225684939117297889600 - 378 = 2*(3^3)*(7^4)*6553*411473* 160830097 == 0 (mod 7^4).
a(13) - a(1) = 1081581197431986720000 - 12 = (2^2)*3*(13^3)* 41024927834622467 == 0 (mod 13^3)
		

Crossrefs

Programs

  • Maple
    a := n -> if n = 0 then 1 elif n = 1 then 12 else
    5*(3*n - 2)*(3*n - 4)*(5*n - 1)*(5*n - 3)*(5*n - 7)*(5*n - 9)/(n^2*(n - 1)^2*(3*n - 1)*(3*n - 5))*a(n-2) end if:
    seq(a(n), n = 0..20);
  • Python
    from math import factorial
    from sympy import factorial2
    def A352651(n): return int(factorial(5*n)*factorial2(3*n)**2//factorial(3*n)//factorial2(5*n)//factorial(n)**2//factorial2(n)) # Chai Wah Wu, Aug 08 2023

Formula

a(n) = (5*n)!*(3*n/2)!^2/( (3*n)!*(5*n/2)!*n!^2*(n/2)! ).
a(n) = 3*Sum_{k = 0..n} (-1)^(n+k)*binomial(5*n,n-k)*binomial(3*n+k-1,k)^2 for n >= 1 (this formula shows the sequence is integral).
a(n) = 3*Sum_{k = 0..n} binomial(2*n-k-2,n-k)*binomial(3*n-1,k)^2 for n >= 1.
a(n) = 3 * [x^n] ( (1 - x)^(2*n) * P(3*n-1,(1 + x)/(1 - x)) ) for n >= 1, where P(n,x) denotes the n-th Legendre polynomial.
a(n) ~ (sqrt(3)/Pi)*(5^n)^(5/2)*( 1/(2*n) - 2/(15*n^2) + 4/(225*n^3) + O(1/n^4) ).
a(n) = A008978(n)/A275652(n).
a(n) = binomial(3*n/2,n)*A262732(n).
a(n) = 3*(-1)^n*binomial(5*n,n)*hypergeom([-n, 3*n, 3*n], [1, 4*n+1], 1) for n >= 1.
a(n) = 5*(3*n-2)*(3*n-4)*(5*n-1)*(5*n-3)*(5*n-7)*(5*n-9)/(n^2*(n-1)^2*(3*n- 1)*(3*n-5)) * a(n-2) with a(0) = 1 and a(1) = 12.
a(p) == 12 (mod p^3) for prime p >= 5.
O.g.f.: A(x) = hypergeom([1/10, 3/10, 7/10, 9/10, 1/3, 2/3], [1/6, 5/6, 1/2, 1/2, 1], (5^5)*x^2) + 12*x*hypergeom([3/5, 4/5, 6/5, 7/5, 5/6, 7/6], [2/3, 4/3, 3/2, 3/2, 1], (5^5)*x^2).

A361636 Diagonal of the rational function 1/(1 - v*w*x*y*z * (1 + 1/v + 1/w + 1/x + 1/y + 1/z)).

Original entry on oeis.org

1, 1, 1, 1, 121, 721, 2521, 6721, 128521, 1277641, 7539841, 32527441, 281835841, 3031468441, 23779315561, 139431015361, 962322302761, 9034098300361, 79726215362761, 569831799431881, 3952559737085401, 32660742079719601, 289694072383115401
Offset: 0

Views

Author

Seiichi Manyama, Mar 19 2023

Keywords

Comments

Diagonal of the rational function 1/(1 - (v^4 + w^4 + x^4 + y^4 + z^4 + v*w*x*y*z)). - Seiichi Manyama, Jul 04 2025

Crossrefs

Programs

  • Mathematica
    Table[Sum[(n + k)!/(k!^5*(n - 4*k)!), {k, 0, n/4}], {n, 0, 25}] (* Vaclav Kotesovec, Mar 19 2023 *)
  • PARI
    a(n) = sum(k=0, n\4, (n+k)!/(k!^5*(n-4*k)!));

Formula

a(n) = Sum_{k=0..floor(n/4)} (n+k)!/(k!^5 * (n-4*k)!).
G.f.: Sum_{k>=0} (5*k)!/k!^5 * x^(4*k)/(1-x)^(5*k+1).
Recurrence: n^4*(5*n - 19)*(5*n - 18)*(5*n - 17)*(5*n - 14)*(5*n - 13)*(5*n - 9)*a(n) = (5*n - 19)*(5*n - 18)*(5*n - 14)*(625*n^7 - 6125*n^6 + 23025*n^5 - 43195*n^4 + 45394*n^3 - 28716*n^2 + 10144*n - 1536)*a(n-1) - (5*n - 19)*(31250*n^9 - 568750*n^8 + 4441875*n^7 - 19516000*n^6 + 53172025*n^5 - 93366740*n^4 + 106140132*n^3 - 75781664*n^2 + 30987264*n - 5529600)*a(n-2) + (5*n - 4)*(31250*n^9 - 725000*n^8 + 7354375*n^7 - 42784750*n^6 + 157237100*n^5 - 378480620*n^4 + 596812963*n^3 - 594970390*n^2 + 340845072*n - 85743360)*a(n-3) + (5*n - 16)*(5*n - 9)*(5*n - 8)*(5*n - 4)*(78000*n^6 - 1450800*n^5 + 11179085*n^4 - 45672814*n^3 + 104341702*n^2 - 126378083*n + 63400710)*a(n-4) + (n-4)^4*(5*n - 14)*(5*n - 13)*(5*n - 12)*(5*n - 9)*(5*n - 8)*(5*n - 4)*a(n-5). - Vaclav Kotesovec, Mar 19 2023

A370295 G.f.: exp(Sum_{k>=1} (5*k)!/(5!*k!^5) * x^k/k).

Original entry on oeis.org

1, 1, 473, 467606, 637121154, 1039792179805, 1905441263652576, 3785382599457953517, 7981116324798212651066, 17613760342120835610374245, 40303877398793645855018120732, 94970269248783993542201925505548, 229287077006842005926064077532676555, 565001770629439341048001870559581136157
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 14 2024

Keywords

Comments

In general, for m>=2, if g.f. = exp(Sum_{k>=1} (m*k)!/(m!*k!^m) * x^k/k), then a(n,m) ~ c(m) * m^(m*n) / n^((m+1)/2), where c(m) = exp(HypergeometricPFQ[{1, 1, (m+1)/m, (m+2)/m, ... , (2*m-1)/m}, {2, 2, ...m-times... 2, 2}, 1] / m^m) / (m! * (2*Pi)^((m-1)/2) / sqrt(m)).
Limit_{m->oo} c(m) / (exp(m)/(m^m*(2*Pi)^(m/2))) = 1.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Exp[Sum[(5*k)!/(5!*k!^5)*x^k/k, {k, 1, 20}]], {x, 0, 20}], x]
    CoefficientList[Series[Exp[x*HypergeometricPFQ[{1, 1, 6/5, 7/5, 8/5, 9/5}, {2, 2, 2, 2, 2}, 3125*x]], {x, 0, 20}], x]

Formula

G.f. A(x) = G(x)^(1/120), where G(x) is the g.f. for A333043.
a(n) ~ c * 5^(5*n)/n^3, where c = exp(HypergeometricPFQ[{1, 1, 6/5, 7/5, 8/5, 9/5}, {2, 2, 2, 2, 2}, 1] / 3125) / (96*sqrt(5)*Pi^2) = 0.00047219161473962545263459216995582653262467228952818554361164671183728...

A001460 a(n) = (5*n)!/((2*n)!*(n!)^3).

Original entry on oeis.org

1, 60, 18900, 8408400, 4364860500, 2473653742560, 1483630051503600, 925833064837824000, 594927307937311420500, 391004487919622186610000, 261614105944603801295306400, 177601637048592673099585584000, 122027661025630720013771117910000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(5*n)/(Factorial(2*n)*Factorial(n)^3):n in [0..15]]; // Marius A. Burtea, Feb 17 2020
    
  • Maple
    f := n->(5*n)!/((2*n)!*(n!)^3);
    seq((5*n)!/(n!)^5/binomial(2*n,n), n=0..15); # Zerinvary Lajos, Jun 28 2007
  • Mathematica
    Table[(5 n)!/((2 n)! (n!)^3), {n, 0, 15}] (* or *)
    Table[(5 n)!/(n!)^5/Binomial[2 n, n], {n, 0, 15}] (* Michael De Vlieger, Jul 18 2016 *)
  • PARI
    a(n) = (5*n)!/((2*n)!*n!^3);  \\ Gheorghe Coserea, Jul 18 2016
    
  • SageMath
    f=factorial; [f(5*n)/(f(2*n)*f(n)^3) for n in range(16)] # G. C. Greubel, Sep 03 2023

Formula

a(n) = A008978(n)/A000984(n). - Zerinvary Lajos, Jun 28 2007
From Gheorghe Coserea, Jul 18 2016: (Start)
a(n) = [(xyzw)^(3n)] 1/(1-(w*x*y+w*z+x*z+y*z)).
a(n) ~ sqrt(5)/(4*Pi^(3/2)) * n^(-3/2) * (3125/4)^n.
0 = (-4*x^3+3125*x^6)*y'''' + (-18*x^2+37500*x^5)*y''' + (-10*x+117500*x^4)*y'' + (2+95000*x^3)*y' + (9720*x^2)*y, where y(x) = A(x^3). (End)
From Peter Bala, Dec 30 2019: (Start)
a(n) = binomial(3*n,n)*binomial(4*n,n)*binomial(5*n,n).
a(n) = ( [x^n](1 + x)^(3*n) ) * ( [x^n](1 + x)^(4*n) ) * ( [x^n](1 + x)^(5*n) ).
a(n) = [x^n]( F(x)^(60*n) ), where [x^n] is the coefficient extraction operator and where F(x) = 1 + x + 98*x^2 + 23861*x^3 + 7987534*x^4 + 3169655645*x^5 + 1398711076599*x^6 + ... appears to have integer coefficients. Cf. A008978. (End)
From Peter Bala, Feb 16 2020: (Start)
Congruences: a(m*p^k) == a(m*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers m and k - apply Mestrovic, equation 39, p. 12.
a(n) = [(x*y*z)^n] (1 + x + y + z)^(5*n). (End)
a(n) = a(n-1)*5*(5*n - 1)*(5*n - 2)*(5*n - 3)*(5*n - 4)/(2*n^3*(2*n - 1)). - Neven Sajko, Jul 22 2023

A333043 G.f.: exp(Sum_{k>=1} (5*k)!/k!^5 * x^k/k).

Original entry on oeis.org

1, 120, 63900, 63148000, 85136103750, 137629764435024, 250331826090382280, 494436455370401985600, 1037731227148399567352625, 2281874234819846601146115000, 5205960892339635531670022801628, 12237148815599682784939438806708960, 29483782935554473122496294160376815950
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 06 2020

Keywords

Comments

In general, if r>=2, m>0 and g.f. = exp(m * Sum_{k>=1} (r*k)!/k!^r * x^k/k), then a(n) ~ c(r,m) * m * r^(r*n + 1/2) / ((2*Pi)^((r-1)/2) * n^((r+1)/2)) , where c(r,m) = exp((m * r! / r^r) * HypergeometricPFQ[{1, 1, (r+1)/r, (r+2)/r, ... , (2*r-1)/r}, {2, 2, ...r-times... 2, 2}, 1]). - Vaclav Kotesovec, Feb 16 2024

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Exp[Sum[(5*k)!/k!^5*x^k/k, {k, 1, 20}]], {x, 0, 20}], x]
    CoefficientList[Series[Exp[120*x*HypergeometricPFQ[{1, 1, 6/5, 7/5, 8/5, 9/5}, {2, 2, 2, 2, 2}, 3125*x]], {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 09 2024 *)

Formula

a(n) ~ c * 5^(5*n)/n^3, where c = sqrt(5) * exp(24*HypergeometricPFQ[{1, 1, 6/5, 7/5, 8/5, 9/5}, {2, 2, 2, 2, 2}, 1] / 625) / (4*Pi^2) = 0.05943406... - Vaclav Kotesovec, Mar 06 2020, updated Feb 16 2024
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} A008978(k) * a(n-k). - Seiichi Manyama, Feb 09 2024

A367569 a(n) = Product_{k=0..n} (5*k)! / k!^5.

Original entry on oeis.org

1, 120, 13608000, 2288430144000000, 699207483978843840000000000, 435858496811697532778806061260800000000000, 597507154003470929939550139366865942134606725120000000000000, 1898554530971015145216561379837863419725314413457243266261094236160000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[(5*k)!/k!^5, {k, 0, n}], {n, 0, 10}]
    Table[Product[Binomial[5*k,k] * Binomial[4*k,k] * Binomial[3*k,k] * Binomial[2*k,k], {k, 0, n}], {n, 0, 10}]

Formula

a(n) = Product_{k=0..n} binomial(5*k,k) * binomial(4*k,k) * binomial(3*k,k) * binomial(2*k,k).
a(n) = A268506(n) / A000178(n)^5.
a(n) ~ A^(24/5) * Gamma(1/5)^(3/5) * Gamma(2/5)^(2/5) * Gamma(3/5)^(1/5) * 5^(5*n^2/2 + 3*n + 23/60) * exp(2*n - 2/5) / (n^(2*n + 7/5) * (2*Pi)^(2*n + 13/5)), where A is the Glaisher-Kinkelin constant A074962.
Equivalently, a(n) ~ A^(24/5) * Gamma(1/5)^(3/5) * Gamma(2/5)^(1/5) * 5^(5*n^2/2 + 3*n + 1/3) * exp(2*n - 2/5) / ((1 + sqrt(5))^(1/10) * 2^(2*n + 23/10) * Pi^(2*n + 12/5) * n^(2*n + 7/5)).

A381164 a(n) = Sum_{k=0..n} binomial(n,k)*(5*k)!/(k!)^5.

Original entry on oeis.org

1, 121, 113641, 168508561, 306213587881, 624890127114721, 1374618918516663841, 3187068298971939367561, 7682172545187676630759081, 19079663136489248380982551201, 48525227073661262262248690661841, 125818607409307965748858681991235961, 331488456546076036761442657285875590881
Offset: 0

Views

Author

Stefano Spezia, Feb 15 2025

Keywords

Comments

Calabi-Yau series number 79.

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[Binomial[n, k](5k)!/k!^5, {k, 0, n}]; Array[a, 13, 0]

Formula

G.f.: hypergeom([1/5, 2/5, 3/5, 4/5], [1, 1, 1], 5^5*x/(1-x))/(1-x).
a(n) = hypergeom([1/5, 2/5, 3/5, 4/5, -n], [1, 1, 1, 1], -5^5).
a(n) == 1 (mod 120).
a(n) ~ 2^n * 3^(n+2) * 521^(n+2) / (5^(19/2) * Pi^2 * n^2). - Vaclav Kotesovec, May 29 2025
Previous Showing 11-20 of 23 results. Next