cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 89 results. Next

A130590 Decimal expansion of the mean Euclidean distance from a point in the unit 3D cube to a given vertex of the cube.

Original entry on oeis.org

9, 6, 0, 5, 9, 1, 9, 5, 6, 4, 5, 5, 0, 5, 2, 9, 5, 9, 4, 2, 5, 1, 0, 7, 9, 5, 1, 3, 9, 3, 8, 0, 6, 3, 6, 0, 2, 4, 0, 9, 7, 6, 9, 0, 7, 5, 4, 5, 7, 2, 3, 9, 8, 7, 6, 9, 0, 8, 9, 8, 5, 1, 5, 3, 1, 0, 3, 8, 7, 6, 6, 3, 3, 4, 0, 1, 6, 3, 2, 8, 9, 0, 3, 1, 2, 2, 7, 9, 3, 5, 6, 9, 1, 7, 7, 4, 8, 2, 4, 5, 3, 1, 2, 1, 6
Offset: 0

Views

Author

R. J. Mathar, Aug 10 2007

Keywords

Examples

			0.960591956455052959425107951...
		

Crossrefs

Analogous constants: A244921 (square), A254979 (4-cube).

Programs

  • Maple
    evalf( sqrt(3)/4+log(2+sqrt(3))/2-Pi/24);
  • Mathematica
    RealDigits[Sqrt[3]/4 + Log[2+Sqrt[3]]/2 - Pi/24, 10, 120][[1]] (* Amiram Eldar, Jun 04 2023 *)

Formula

Equals sqrt(3)/4 + log(2+sqrt(3))/2 - Pi/24 = A010527/2 + A065914/2 - A019691.
Equals 2 * A135691. - Amiram Eldar, Jun 04 2023

Extensions

Name corrected by Amiram Eldar, Jun 04 2023

A179592 Decimal expansion of the circumradius of pentagonal cupola with edge length 1.

Original entry on oeis.org

2, 2, 3, 2, 9, 5, 0, 5, 0, 9, 4, 1, 5, 6, 9, 0, 0, 4, 9, 5, 0, 0, 4, 1, 5, 3, 8, 3, 2, 4, 9, 6, 8, 2, 7, 7, 2, 9, 3, 4, 0, 8, 0, 7, 3, 0, 5, 7, 9, 1, 8, 1, 6, 4, 7, 4, 5, 7, 4, 4, 1, 2, 6, 0, 8, 2, 5, 5, 6, 5, 8, 9, 4, 9, 0, 1, 6, 4, 3, 8, 2, 8, 9, 6, 2, 4, 5, 1, 9, 5, 0, 6, 0, 9, 2, 7, 3, 7, 3, 8, 5, 6, 4, 7, 4
Offset: 1

Views

Author

Keywords

Comments

Pentagonal cupola: 15 vertices, 25 edges, and 12 faces.

Examples

			2.232950509415690049500415383249682772934080730579181647457441260...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sqrt[11+4*Sqrt[5]]/2,200]]

Formula

Digits of sqrt(11+4*sqrt(5))/2.

A332133 Decimal expansion of (1 + sqrt(3))/2, unique positive root of x^2 - x - 1/2.

Original entry on oeis.org

1, 3, 6, 6, 0, 2, 5, 4, 0, 3, 7, 8, 4, 4, 3, 8, 6, 4, 6, 7, 6, 3, 7, 2, 3, 1, 7, 0, 7, 5, 2, 9, 3, 6, 1, 8, 3, 4, 7, 1, 4, 0, 2, 6, 2, 6, 9, 0, 5, 1, 9, 0, 3, 1, 4, 0, 2, 7, 9, 0, 3, 4, 8, 9, 7, 2, 5, 9, 6, 6, 5, 0, 8, 4, 5, 4, 4, 0, 0, 0, 1, 8, 5, 4, 0, 5, 7, 3, 0, 9, 3, 3, 7, 8, 6, 2, 4, 2, 8, 7, 8, 3, 7, 8
Offset: 1

Views

Author

M. F. Hasler, Oct 29 2020

Keywords

Comments

Also, max {a, b} where {a,b} is the unique solution of a + b = 1 and a^2 + b^2 = 2 (implying also ab = -1/2 and a^3 + b^3 = 5/2 without solving for a, b). See A332122 for a generalization to 3 variables {a, b, c}.
This is a non-integer element of the quadratic number field Q(sqrt(3)) with the given monic minimal polynomial. The other negative root is -(-1 + sqrt(3))/2 = - A152422. - Wolfdieter Lang, Aug 30 2022

Examples

			1.3660254037844386467637231707529361834714026269051903140279...
		

Crossrefs

Cf. A152422 (this - 1 = (sqrt(3)-1)/2), A010527, A332122 (analog for 3rd degree).

Programs

  • Mathematica
    RealDigits[(1 + Sqrt[3])/2, 10, 120][[1]] (* Amiram Eldar, Jun 21 2023 *)
  • PARI
    localprec(111); digits(solve(a=0,2,a^2-a-1/2)\.1^99)
    
  • PARI
    polrootsreal(2*x^2-2*x-1)[2] \\ Charles R Greathouse IV, Jan 26 2023

Formula

Equals 1/2 + Sum_{n>=0} ((-1)^(n + 1)*binomial(2*n, n))/(2^(3*n + 1/2)*(2*n - 1)). - Antonio GraciĆ” Llorente, Nov 11 2024

A010153 Continued fraction for sqrt(75) (or 5*sqrt(3)).

Original entry on oeis.org

8, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16, 1, 1, 1, 16
Offset: 0

Views

Author

Keywords

Examples

			8.66025403784438646763723170... = 8 + 1/(1 + 1/(1 + 1/(1 + 1/(16 + ...)))). - _Harry J. Smith_, Jun 02 2009
		

Crossrefs

Cf. A010527.

Programs

  • Mathematica
    ContinuedFraction[Sqrt[75],300] (* Vladimir Joseph Stephan Orlovsky, Mar 08 2011 *)
    PadRight[{8},120,{16,1,1,1}] (* Harvey P. Dale, Oct 05 2024 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 18000); x=contfrac(sqrt(75)); for (n=0, 20000, write("b010153.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 02 2009

Formula

From Amiram Eldar, Nov 13 2023: (Start)
Multiplicative with a(2) = 1, a(2^e) = 16 for e >= 2, and a(p^e) = 1 for an odd prime p.
Dirichlet g.f.: zeta(s) * (1 + 15/4^s). (End)

A092242 Numbers that are congruent to {5, 7} (mod 12).

Original entry on oeis.org

5, 7, 17, 19, 29, 31, 41, 43, 53, 55, 65, 67, 77, 79, 89, 91, 101, 103, 113, 115, 125, 127, 137, 139, 149, 151, 161, 163, 173, 175, 185, 187, 197, 199, 209, 211, 221, 223, 233, 235, 245, 247, 257, 259, 269, 271, 281, 283, 293, 295, 305, 307, 317, 319, 329, 331
Offset: 1

Views

Author

Giovanni Teofilatto, Feb 19 2004

Keywords

References

  • L. B. W. Jolley, Summation of Series, Dover Publications, 1961, p. 64.

Crossrefs

Fifth row of A092260.

Programs

  • Mathematica
    Select[Range[331], MemberQ[{5, 7}, Mod[#, 12]] &] (* Amiram Eldar, Dec 04 2021 *)

Formula

1/5^2 + 1/7^2 + 1/17^2 + 1/19^2 + 1/29^2 + 1/31^2 + ... = Pi^2*(2 - sqrt(3))/36 = 0.073459792... [Jolley] - Gary W. Adamson, Dec 20 2006
a(n) = 12*n - a(n-1) - 12 (with a(1)=5). - Vincenzo Librandi, Nov 16 2010
From R. J. Mathar, Oct 08 2011: (Start)
a(n) = 6*n - 3 - 2*(-1)^n.
G.f.: x*(5+2*x+5*x^2) / ( (1+x)*(x-1)^2 ). (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (2 - sqrt(3))*Pi/12. - Amiram Eldar, Dec 04 2021
From Amiram Eldar, Nov 24 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = sec(Pi/12) (A120683).
Product_{n>=1} (1 + (-1)^n/a(n)) = (sqrt(3)/2)*sec(Pi/12) (= A010527 * A120683). (End)

Extensions

Edited and extended by Ray Chandler, Feb 21 2004

A093821 Decimal expansion of (2*(3 - sqrt(3)))/3.

Original entry on oeis.org

8, 4, 5, 2, 9, 9, 4, 6, 1, 6, 2, 0, 7, 4, 8, 4, 7, 0, 9, 8, 1, 7, 0, 2, 4, 3, 8, 9, 9, 6, 0, 8, 5, 0, 8, 8, 7, 0, 4, 7, 9, 6, 4, 9, 7, 4, 5, 9, 7, 4, 6, 2, 4, 7, 9, 6, 2, 7, 9, 5, 3, 4, 7, 0, 3, 2, 0, 4, 4, 6, 5, 5, 3, 9, 4, 1, 3, 3, 3, 0, 8, 6, 1, 2, 5, 6, 9, 2, 0, 8, 8, 2, 8, 5, 0, 0, 9, 4, 9, 5, 4, 9
Offset: 0

Views

Author

Eric W. Weisstein, Apr 16 2004

Keywords

Comments

Area of lamina found by Pal in the Lebesgue minimal problem.
This appears also as the ratio r_3/r_4 of the outer radii of a regular triangle circumscribed by a regular quadrangle such that they share one vertex and the other two vertices of the triangle touch two sides of the quadrangle. The center of the quadrangle is displaced from the center of the triangle by d/r_4 = 1-2/sqrt(3) = 0.154700.. (see A020832). # R. J. Mathar, Jan 22 2013

Examples

			0.845299461...
		

Crossrefs

Programs

  • Maple
    evalf(2*(1-1/sqrt(3))) ; # R. J. Mathar, Jan 22 2013

A165953 Decimal expansion of (5*sqrt(3) + sqrt(15))/(6*Pi).

Original entry on oeis.org

6, 6, 4, 9, 0, 8, 8, 9, 4, 2, 0, 5, 3, 2, 6, 6, 4, 3, 1, 1, 4, 4, 2, 8, 4, 4, 6, 7, 0, 8, 6, 3, 3, 7, 1, 6, 1, 6, 4, 8, 7, 6, 5, 8, 0, 5, 5, 5, 6, 9, 1, 9, 3, 8, 1, 0, 5, 7, 5, 9, 2, 6, 0, 5, 7, 2, 2, 9, 6, 4, 7, 1, 8, 1, 8, 7, 7, 3, 2, 5, 9, 7, 4, 9, 7, 0, 8, 9, 0, 0, 2, 6, 9, 2, 0, 9, 2, 5, 9, 8, 9, 8, 2, 8, 0
Offset: 0

Views

Author

Rick L. Shepherd, Oct 02 2009

Keywords

Comments

The ratio of the volume of a regular dodecahedron to the volume of the circumscribed sphere (which has circumradius a*(sqrt(3) + sqrt(15))/4 = a*(A002194 + A010472)/4, where a is the dodecahedron's edge length; see MathWorld link). For similar ratios for other Platonic solids, see A165922, A049541, A165952, and A165954. A063723 shows the order of these by size.

Examples

			0.6649088942053266431144284467086337161648765805556919381057592605722964718...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(5*Sqrt[3]+Sqrt[15])/(6*Pi),10,120][[1]] (* Harvey P. Dale, Feb 16 2018 *)
  • PARI
    (5*sqrt(3)+sqrt(15))/(6*Pi)

Formula

Equals (5*A002194 + A010472)/(6*A000796).
Equals (5*A002194 + A010472)*A049541/6.
Equals (10*A010527 + A010472)*A049541/6.
Equals (5 + sqrt(5))/(2*Pi*sqrt(3)).
Equals (5 + A002163)*A049541*A020760/2.

A242703 Decimal expansion of sqrt(7)/2.

Original entry on oeis.org

1, 3, 2, 2, 8, 7, 5, 6, 5, 5, 5, 3, 2, 2, 9, 5, 2, 9, 5, 2, 5, 0, 8, 0, 7, 8, 7, 6, 8, 1, 9, 6, 3, 0, 2, 1, 2, 8, 5, 5, 1, 2, 9, 5, 9, 1, 5, 4, 1, 2, 2, 5, 0, 9, 0, 1, 8, 4, 1, 6, 7, 2, 2, 9, 6, 0, 0, 5, 3, 4, 4, 1, 1, 6, 1, 5, 1, 4, 1, 8, 1, 3, 8, 8, 0, 1, 9, 6, 4, 4, 3, 2, 3, 7, 2, 7
Offset: 1

Views

Author

Alonso del Arte, May 20 2014

Keywords

Comments

Absolute value of the imaginary part of any of the nontrivial divisors of 2 in O_Q(sqrt(-7)).
The incircle of a triangle with sides of lengths 4, 5, 6 units respectively has a radius of sqrt(7)/2.
With a different offset, decimal expansion of 5 * sqrt(7).
From Wolfdieter Lang, Nov 18 2017: (Start)
In a regular hexagon inscribed in a circle with a radius of 1 unit the three distinct distances between any vertex and the middle of the sides are 1/2, sqrt(7)/2 and sqrt(13)/2.
The continued fraction expansion of sqrt(7)/2 is 1, repeat(3, 10, 3, 2). The convergents are given in A294972/A294973. (End)

Examples

			1.32287565553229529525...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[7]/2, 10, 100][[1]]
  • PARI
    { default(realprecision, 20080); x=sqrt(7)/2; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b242703.txt", n, " ", d)); } \\ Iain Fox, Nov 18 2017

Formula

(1/2 - sqrt(-7)/2)(1/2 + sqrt(-7)/2) = 2.
Equals A010465/2. - R. J. Mathar, Feb 23 2021

A339260 Decimal expansion of the maximum possible volume of a polyhedron with 8 vertices inscribed in the unit sphere.

Original entry on oeis.org

1, 8, 1, 5, 7, 1, 6, 1, 0, 4, 2, 2, 4, 4, 2, 0, 3, 9, 7, 5, 0, 8, 4, 9, 4, 9, 3, 0, 6, 3, 3, 1, 7, 7, 7, 8, 9, 0, 1, 3, 1, 0, 0, 9, 5, 5, 2, 7, 5, 4, 3, 9, 8, 3, 7, 6, 6, 6, 3, 7, 2, 9, 1, 6, 9, 1, 8, 4, 8, 9, 9, 3, 7, 0, 0, 0, 2, 8, 9, 3, 8, 6, 5, 2, 7, 0, 3
Offset: 1

Views

Author

Hugo Pfoertner, Nov 29 2020

Keywords

Comments

Berman and Hanes (see link, page 81) proved in 1970 that an arrangement of 8 points on the surface of a sphere with 4 points with node degree 4 and 4 points with node degree 5 is the one with a maximum volume of their convex hull.

Examples

			1.8157161042244203975084949306331777890131009552754398376663729...
		

Crossrefs

Cf. A010527 (volume of double 5-pyramid), A081314, A081366, A122553 (volume of octahedron), A339259.

Programs

  • Mathematica
    RealDigits[Sqrt[(475 + 29*Sqrt[145])/250], 10, 120][[1]] (* Amiram Eldar, Jun 01 2023 *)
  • PARI
    sqrt((475+29*sqrt(145))/250)

Formula

Equals sqrt((475 + 29*sqrt(145))/250).

A339261 Decimal expansion of the conjecturally maximum possible volume of a polyhedron with 9 vertices inscribed in the unit sphere.

Original entry on oeis.org

2, 0, 4, 3, 7, 5, 0, 1, 1, 5, 8, 9, 9, 6, 3, 9, 8, 4, 1, 1, 6, 6, 3, 6, 5, 4, 6, 4, 2, 2, 6, 9, 8, 5, 3, 3, 3, 8, 6, 3, 2, 6, 0, 6, 1, 5, 2, 9, 4, 7, 5, 1, 8, 1, 8, 7, 1, 8, 2, 1, 5, 7, 9, 5, 6, 8, 7, 1, 0, 4, 2, 6, 4, 0, 9, 2, 7, 7, 1, 4, 0, 6, 1, 7, 8, 5, 9
Offset: 1

Views

Author

Hugo Pfoertner, Dec 05 2020

Keywords

Examples

			2.0437501158996398411663654642269853338632606152947518187182157956871...
		

Crossrefs

Cf. A010527 (volume of double 5-pyramid), A081314, A081366, A122553 (volume of octahedron), A339259, A339260, A339261, A339262, A339263.

Programs

  • Mathematica
    RealDigits[3*Sqrt[2*Sqrt[3] - 3], 10, 120][[1]] (* Amiram Eldar, Jun 28 2023 *)
  • PARI
    3*sqrt(2*sqrt(3) - 3)

Formula

Equals 3*sqrt(2*sqrt(3) - 3).
Previous Showing 51-60 of 89 results. Next