cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A141551 Numbers k with property that if d divides k, then tau(tau(d)) also divides k.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 180, 192, 204, 228, 240, 252, 276, 288, 300, 324, 348, 360, 372, 396, 444, 468, 480, 492, 516, 564, 576, 588, 600, 612, 636, 684, 708, 720, 732, 804, 828, 840, 852, 876, 900, 948, 960, 972, 996, 1044, 1068
Offset: 1

Views

Author

N. J. A. Sloane, Sep 12 2008

Keywords

Comments

tau() = A000005().

Crossrefs

Programs

  • Maple
    with(numtheory); isA141551 := proc(n) local dvs,d; dvs := divisors(n) ; for d in dvs do if not tau(tau(d)) in dvs then RETURN(false): fi; od: RETURN(true); end:
    t1:=[]; for n from 1 to 60000 do if isA141551(n) then t1:=[op(t1),n]; fi; od:
  • Mathematica
    aQ[n_] := AllTrue[Divisors[n], Divisible[n, DivisorSigma[0, DivisorSigma[0, #]]] &]; Select[Range[1000], aQ] (* Amiram Eldar, Jul 08 2019 *)

A193348 Number of odd divisors of tau(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2, 3
Offset: 1

Views

Author

Michel Lagneau, Jul 23 2011

Keywords

Examples

			a(36) = 3 because tau(36) = 9 and the 3 odd divisors are {1, 3, 9}.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{d = Divisors[DivisorSigma[0,n]]}, Count[OddQ[d], True]]; Table[a[n], {n, 80}]
  • PARI
    a(n)=sumdiv(sigma(n,0),d,d%2);
    
  • PARI
    a(n)=n=numdiv(n);numdiv(n>>valuation(n,2)) \\ Charles R Greathouse IV, Jul 30 2011

Formula

a(n) = A001227(A000005(n)). - Reinhard Zumkeller, Jul 25 2011
From Amiram Eldar, Aug 12 2024: (Start)
a(n) = 1 if and only if n is in A036537.
a(n) = A010553(n) if and only if n is a square. (End)

A053021 Number of divisors function applied twice to n!.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 12, 12, 12, 16, 24, 24, 30, 30, 42, 36, 40, 48, 56, 80, 48, 72, 80, 112, 112, 144, 120, 216, 252, 168, 189, 168, 80, 224, 168, 288, 320, 121, 192, 440, 480, 384, 408, 624, 792, 864, 960, 1152, 864, 728, 504, 780, 840, 1080, 960, 840, 972
Offset: 1

Views

Author

Labos Elemer, Feb 24 2000

Keywords

Examples

			a(7) = d(d(7!)) = d(60) = 12;
a(8) = d(d(8!)) = d(96) = 12.
		

Crossrefs

Programs

  • Mathematica
    DivisorSigma[0,DivisorSigma[0,Range[60]!]] (* Harvey P. Dale, May 20 2013 *)
  • PARI
    a(n) = numdiv(numdiv(n!)); \\ Michel Marcus, May 01 2016

Formula

a(n) = A010553(n!) = A000005(A027423(n)) = A000005(A000005(A000142(n))).

A111407 a(n) = f(f(n+1)) - f(f(n)), where f(0) = 0 and f(m) = tau(m) = A000005(m) for m > 0.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, -1, 1, -1, 1, -1, 2, -2, 1, 0, -1, 0, 2, -2, 2, -1, 0, -1, 2, -2, 1, 0, 1, -2, 2, -2, 2, -1, 0, 0, 0, -1, 1, 0, 1, -2, 2, -2, 2, 0, -1, -1, 2, -2, 2, -1, 1, -2, 2, -1, 1, -1, 0, -1, 4, -4, 1, 1, -2, 1, 1, -2, 2, -1, 1, -2, 4, -4, 1, 1, 0, -1, 1, -2, 2, -2, 1, -1, 4, -3, 0, 0, 1, -2, 4, -3, 1, -1, 0, 0, 3, -4, 2, 0, -1, -1
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2005

Keywords

Crossrefs

First differences of A010553.

Programs

  • PARI
    f = numdiv;
    a(n) = f(f(n+1)) - f(f(n));
    concat([1], vector(166,n,a(n))) \\ Joerg Arndt, Jul 06 2013
    
  • PARI
    f(n) = if(!n,n,numdiv(n));
    A111407(n) = f(f(n+1)) - f(f(n)); \\ Antti Karttunen, Oct 07 2017

Extensions

Description clarified by Antti Karttunen, Oct 07 2017

A139130 a(n) = Sum_{k=1..n} d(d(k)), where d(k) = number of divisors of k.

Original entry on oeis.org

1, 3, 5, 7, 9, 12, 14, 17, 19, 22, 24, 28, 30, 33, 36, 38, 40, 44, 46, 50, 53, 56, 58, 62, 64, 67, 70, 74, 76, 80, 82, 86, 89, 92, 95, 98, 100, 103, 106, 110, 112, 116, 118, 122, 126, 129, 131, 135, 137, 141, 144, 148, 150, 154, 157, 161, 164, 167, 169, 175, 177, 180
Offset: 1

Views

Author

Leroy Quet, Jun 05 2008

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): a:= n-> add(tau(tau (k)), k=1..n): seq(a(n), n=1..70); # Alois P. Heinz, Aug 28 2008
  • Mathematica
    Table[Sum[DivisorSigma[0,DivisorSigma[0,k]],{k,1,n}],{n,1,62}] (* Geoffrey Critzer, Sep 28 2013 *)
    Accumulate[Table[DivisorSigma[0, DivisorSigma[0, k]], {k, 1, 62}]] (* Amiram Eldar, Jan 15 2024 *)
  • PARI
    a(n) = sum(k = 1, n, numdiv(numdiv(k))); \\ Michel Marcus, Sep 28 2013

Formula

a(n) = b * n * log(log(n)) + Sum_{k=0..floor(sqrt(n))} b_k * n/log(n)^k + O(n * exp(-c*sqrt(log(n)))), where b, b_k and c are constants (Heppner, 1974). - Amiram Eldar, Jan 15 2024

Extensions

More terms from Alois P. Heinz, Aug 28 2008

A163107 a(n) = tau(tau(sigma(n))), where tau = A000005, the number of divisors, and sigma = A000203, the sum of divisors of n.

Original entry on oeis.org

1, 2, 2, 2, 3, 4, 3, 3, 2, 4, 4, 4, 3, 4, 4, 2, 4, 3, 4, 4, 4, 3, 4, 6, 2, 4, 4, 4, 4, 6, 4, 4, 4, 4, 4, 3, 3, 6, 4, 6, 4, 6, 4, 6, 4, 6, 4, 4, 3, 3, 6, 4, 4, 5, 6, 5, 4, 6, 6, 5, 3, 6, 4, 2, 6, 4, 4, 6, 6, 4, 6, 4, 3, 4, 4, 6, 6, 5, 4, 4, 2, 6, 6, 6, 6, 6, 5, 6, 6, 6, 4, 5, 4, 4, 5, 6, 4, 4, 6, 3, 4, 5, 4, 5, 4
Offset: 1

Views

Author

Jaroslav Krizek, Jul 20 2009

Keywords

Comments

Repeated application of tau (number of divisors) and sigma (sum of divisors).

Crossrefs

Programs

Formula

Extensions

More terms from R. J. Mathar, Jul 27 2009

A174457 Infinitely refactorable numbers: numbers k such that each iteration under the map x -> A000005(x) produces a divisor of k.

Original entry on oeis.org

1, 2, 12, 24, 36, 60, 72, 84, 96, 108, 132, 156, 180, 204, 228, 240, 252, 276, 288, 348, 360, 372, 396, 444, 468, 480, 492, 504, 516, 564, 600, 612, 636, 640, 672, 684, 708, 720, 732, 792, 804, 828, 852, 864, 876, 936, 948, 972, 996, 1044, 1056, 1068, 1116, 1152
Offset: 1

Views

Author

Matthew Vandermast, Dec 04 2010

Keywords

Comments

In other words, let d^1(n) = A000005(n) and, for all positive integers k, let d^(k+1)(n) = A000005(d^k(n)). Sequence lists numbers n with the property that every such value of d^k(n) divides n.
A141586 is a subsequence. Is A110821 a subsequence?
Not a subsequence of A141551: 504 is the smallest term in this sequence not member of A141551.
a(n) is even for all n, since for any n >= 2, d^k(n) = 2 for some k. Proof: {d^k(n)} is a nonincreasing sequence of k, so it must stablize at a fixed point of the map x -> A000005(x), namely x = 1 or 2. But d^k(n) = 1 for some k implies that n = 1. - Jianing Song, Apr 20 2022

Examples

			9 has 3 divisors, and 9 is a multiple of 3. But 3 has 2 divisors, and 9 is not a multiple of 2. Hence, 9 does not belong to this sequence.
36 has 9 divisors, 9 has 3 divisors, 3 has 2 divisors, and 9, 3, and 2 are all divisors of 36. (Since 2 has 2 divisors, all further steps produce a value of 2.) Hence, 36 belongs to this sequence.
		

Crossrefs

Cf. A036459 (number of steps of the map), A000005 (d(n): number of divisors).
Cf. A010553 (d(d(n))), A036450 (d^3(n)), A036452 (d^4(n)), A036453 (d^5(n)).
Subsequence of A033950 (refactorable numbers: d(n) | n) and A141113 (d(d(n))| n).

Programs

  • PARI
    is_A174457(n, d=n)=!until(d<3, n%(d=numdiv(d)) && return) \\ M. F. Hasler, Dec 05 2010, updated PARI syntax Apr 16 2022

Extensions

Edited by M. F. Hasler, Apr 16 2022

A193347 Number of even divisors of tau(n).

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, 2, 0, 2, 1, 2, 1, 2, 2, 0, 1, 2, 1, 2, 2, 2, 1, 3, 0, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 0, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 1, 2, 0, 2, 2, 2, 1, 3, 2, 3, 2, 2, 1, 4, 1, 2, 2, 0, 2, 3, 1, 2, 2, 3, 1, 4, 1, 2, 2, 2, 2, 3, 1, 2, 0, 2, 1, 4, 2, 2, 2, 3, 1, 4, 2, 2, 2, 2, 2, 4, 1, 2, 2, 0, 1, 3, 1, 3, 3, 2, 1, 4, 1, 3, 2, 2, 1, 3
Offset: 1

Views

Author

Michel Lagneau, Jul 23 2011

Keywords

Examples

			a(24) = 3 because tau(24) = 8 and the 3 even divisors are {2, 4, 8}.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{d = Divisors[DivisorSigma[0,n]]}, Count[EvenQ[d], True]]; Table[f[n], {n, 80}]
  • PARI
    a(n)=sumdiv(sigma(n,0),d,(1-d%2));

Formula

a(n) = A183063(A000005(n)). - Antti Karttunen, May 28 2017
From Amiram Eldar, Jan 27 2025: (Start)
a(n) = 0 if and only if n is a square.
a(n) = A010553(n) - A193348(n). (End)

A193987 Least number k such that tau(tau(k)) = n.

Original entry on oeis.org

1, 2, 6, 12, 120, 60, 7560, 360, 1260, 2520, 294053760, 5040, 128501493120, 332640, 110880, 55440, 106858629141264000, 277200, 188391763176048432000, 720720, 21621600, 27935107200, 1356699703068812438127792000, 3603600, 857656800, 18632716502400, 227026800, 183783600
Offset: 1

Views

Author

T. D. Noe, Aug 10 2011

Keywords

Comments

Here tau is the number of divisors function, A000005. Such a k always exists because an upper bound is 2^(2^n-1). For n < 19, and small composite numbers, terms can be found among the highly composite numbers, A002182. The b-file in A005179 is useful when tau^(-1)(n) is small.

Crossrefs

Cf. A010553 (tau(tau(n))), A000005, A002182, A005179.

Extensions

a(27) corrected by Amiram Eldar, Jan 20 2025

A307305 Self-composition of the number of divisors function (A000005).

Original entry on oeis.org

1, 4, 12, 34, 92, 246, 640, 1660, 4264, 10914, 27732, 70247, 177466, 447570, 1126344, 2828465, 7089391, 17746456, 44384884, 110927184, 276993616, 691007612, 1722214602, 4289021667, 10675557184, 26561494820, 66063726382, 164248795485, 408168287028, 1013819012498
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 01 2019

Keywords

Crossrefs

Programs

  • Mathematica
    g[x_] := g[x] = Sum[x^k/(1 - x^k), {k, 1, 30}]; a[n_] := a[n] = SeriesCoefficient[g[g[x]], {x, 0, n}]; Table[a[n], {n, 30}]

Formula

G.f.: g(g(x)), where g(x) = Sum_{k>=1} x^k/(1 - x^k) is the g.f. of A000005.
Previous Showing 11-20 of 32 results. Next