cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-38 of 38 results.

A370361 Minimum greatest prime factor for a length n number with 2 distinct digits, excluding multiples of 10.

Original entry on oeis.org

2, 3, 3, 7, 11, 29, 19, 19, 23, 67, 29, 139, 107, 71, 101, 137, 127, 307, 173, 347, 383, 439, 271, 853, 521, 587, 883, 571, 823, 941
Offset: 2

Views

Author

Ed Pegg Jr, Mar 05 2024

Keywords

Comments

Multiples of ten are disallowed, because that would give A010716 (all 5) preceded by 2, 3, 3.
Corresponds to 2-distinct-digit numbers in A370849, except at a(21) where 101010110010001010011 with zero digits is more smooth than 222229999999292992929.

Examples

			a(7) = 29 as the largest prime factor of the 7-digit number with exactly two distinct digits, 1111222, is 29 and no 7-digit number with exactly two distinct digits has a smaller largest prime factor and no 7-digit number with exactly two distinct digits smaller than 1111222 has a largest prime factor that is equal to 29. - _David A. Corneth_, Mar 05 2024
a(9) = 19, because 799779977 = 17*19^6 has nine digits, two distinct digits and largest prime factor 19. - _Ed Pegg Jr_, Mar 05 2024
		

Crossrefs

Programs

  • Python
    from sympy import primefactors
    from sympy.utilities.iterables import multiset_permutations
    def A370361(n): return min((max(primefactors(a:=int(''.join(s)))),a) for i in range(10) for j in range(i+1,10) for k in range(1,n) for s in multiset_permutations(str(i)*k+str(j)*(n-k)) if s[0] != '0' and s[-1] != '0')[0] # Chai Wah Wu, Mar 09 2024
    
  • Python
    # See LINKS. Lucas A. Brown, Mar 30 2024

Formula

a(n) = A006530(A370849(n)) unless the smoothest solution is (as for n = 21) a number made of digits {0, 1}, currently excluded in A370849. - M. F. Hasler, Mar 05 2024

Extensions

a(21)-a(23) from Michael S. Branicky, Mar 05 2024
a(24)-a(25) from David A. Corneth, Mar 05 2024
a(26)-a(30) from Don Reble, Mar 06 2024
a(31) from Lucas A. Brown, Mar 30 2024

A021022 Decimal expansion of 1/18.

Original entry on oeis.org

0, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 0

Views

Author

Keywords

Examples

			0.05555555555555555555555555555555555555555555555555...
		

Crossrefs

Programs

  • Mathematica
    PadRight[{0}, 100, 5] (* Paolo Xausa, Nov 24 2024 *)

Formula

Equals -Sum_{n>=3} (-1)^n/(Fibonacci(n)^4-1). - Michel Marcus, May 14 2021
From Elmo R. Oliveira, Aug 05 2024: (Start)
G.f.: 5*x/(1-x).
E.g.f.: 5*(exp(x) - 1).
a(n) = 5 for n >= 1. (End)

A153981 a(n) = 36*Fibonacci(2*n+1) - 4.

Original entry on oeis.org

32, 68, 176, 464, 1220, 3200, 8384, 21956, 57488, 150512, 394052, 1031648, 2700896, 7071044, 18512240, 48465680, 126884804, 332188736, 869681408, 2276855492, 5960885072, 15605799728, 40856514116, 106963742624, 280034713760, 733140398660
Offset: 0

Views

Author

Paul Curtz, Jan 04 2009

Keywords

Programs

  • Magma
    [36*Fibonacci(2*n+1)-4: n in [0..30]]; // Vincenzo Librandi, Aug 07 2011
  • Mathematica
    36*Fibonacci[2*Range[0,30]+1]-4 (* or *) LinearRecurrence[{4,-4,1},{32,68,176},30] (* Harvey P. Dale, Jan 26 2013 *)

Formula

a(n) = 4*A153873(n) = 2*A153819(n).
a(n) = 5 (mod 9) = A010716(n) (mod 9).
a(n) = 3*a(n-1) - a(n-2) + 4.
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3).
a(n) = 3*a(n-1) - 3*a(n-3) + a(n-4).
G.f.: 4*(8 - 15*x + 8x^2)/((1-x)*(1 -3*x +x^2)). - R. J. Mathar, Jan 23 2009

Extensions

Edited and extended by R. J. Mathar and N. J. A. Sloane, Jan 23 2009

A168330 Period 2: repeat [3, -2].

Original entry on oeis.org

3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2, 3, -2
Offset: 1

Views

Author

Klaus Brockhaus, Nov 23 2009

Keywords

Comments

Interleaving of A010701 and -A007395.
Binomial transform of 3 followed by a signed version of A020714.
Inverse binomial transform of 3 followed by A000079.
A084964 without first two terms gives partial sums.

Crossrefs

Cf. A168309 (repeat 4, -3), A010701 (all 3's sequence), A007395 (all 2's sequence), A010716 (all 5's sequence), A020714 (5*2^n), A000079 (powers of 2), A084964 (follow n+2 by n).

Programs

  • Magma
    &cat[[3,-2]: n in [1..42]];
    
  • Magma
    [n eq 1 select 3 else -Self(n-1)+1:n in [1..84]];
    
  • Magma
    [(-5*(-1)^n+1)/2: n in [1..100]]; // Vincenzo Librandi, Jul 19 2016
    
  • Mathematica
    LinearRecurrence[{0, 1}, {3, -2}, 25] (* G. C. Greubel, Jul 18 2016 *)
    PadRight[{},120,{3,-2}] (* Harvey P. Dale, Oct 05 2016 *)
  • PARI
    a(n)=3-n%2*5 \\ Charles R Greathouse IV, Jul 13 2016

Formula

a(n) = (-5*(-1)^n + 1)/2.
a(n+1) - a(n) = 5*(-1)^n.
a(n) = -a(n-1) + 1 for n > 1; a(1) = 3.
a(n) = a(n-2) for n > 2; a(1) = 3, a(2) = -2.
G.f.: x*(3 - 2*x)/((1-x)*(1+x)).
a(n) = A049071(n). - R. J. Mathar, Nov 25 2009
E.g.f.: (1/2)*(1 - exp(-x))*(5 + exp(x)). - G. C. Greubel, Jul 18 2016

A236203 Interleave A005563(n), A028347(n).

Original entry on oeis.org

0, 0, 3, 5, 8, 12, 15, 21, 24, 32, 35, 45, 48, 60, 63, 77, 80, 96, 99, 117, 120, 140, 143, 165, 168, 192, 195, 221, 224, 252, 255, 285, 288, 320, 323, 357, 360, 396, 399, 437, 440, 480, 483, 525, 528, 572, 575, 621, 624, 672, 675, 725, 728, 780, 783, 837, 840, 896
Offset: 2

Views

Author

Paul Curtz, Jan 20 2014

Keywords

Comments

A175628 gives the numerators of interleaved Lyman and Balmer series, i.e., A005563(n)/A000290(n+1) and A061037(n+2)/A061038(n+2).
Difference table of a(n):
-1, -3, 0, 0, 3, 5, 8, 12, 15, 21, 24, ...
-2, 3, 0, 3, 2, 3, 4, 3, 6, 3, 8, ...
5, -3, 3, -1, 1, 1, -1, 3, -3, 5, -5, ...
-8, 6, -4, 2, 0, -2, 4, -6, 8, -10, 12, ...
14, -10, 6, -2, -2, 6, -10, 14, -18, 22, -26, ...
-24, 16, -8, 0, 8, -16, 24, -32, 40, -48, 56, ... .
a(n+2) gives the numerators of 0/1, 0/16, 3/4, 5/36, 8/9, 12/64, 15/16, 21/100, 24/25, 32/144, ... . The denominators are A097362(n+1)^2. (Compare A097362 to A029578.)
Note the particular distribution of a(-n). Example:
a(n-9) = 12,15, 5,8, 0,3, -3,0, -4,-1, -3,0, 0,3, 5,8, 12,15, ... .
a(2n) + a(2n+1) = a(-2n-1) + a(-2n-2) = -4,0,8,20,36,56,80,... = 4*A000096(n-1).
a(2n) + a(2n-1) = a(-2n) + a(-2n-1) = -5,-3,3,13,... = A001105(n) - A010716(n).

Crossrefs

Programs

  • GAP
    List([2..60], n-> (2*n^2 +2*n -19 -(2*n-11)*(-1)^n)/8 ); # G. C. Greubel, Dec 04 2019
  • Magma
    [(2*n^2 + 2*n - 19 - (2*n - 11)*(-1)^n)/8: n in [2..60]]; // Vincenzo Librandi, Jul 27 2014
    
  • Maple
    seq( (2*n^2 +2*n -19 -(2*n-11)*(-1)^n)/8, n=2..60); # G. C. Greubel, Dec 04 2019
  • Mathematica
    CoefficientList[Series[x^2(3x^2-2x-3)/((x-1)^3(x+1)^2), {x, 0, 60}], x] (* Vincenzo Librandi, Jul 27 2014 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,0,3,5,8},60] (* Harvey P. Dale, Aug 30 2018 *)
  • PARI
    concat([0,0], Vec(x^4*(3*x^2-2*x-3)/((x-1)^3*(x+1)^2) + O(x^60))) \\ Colin Barker, Jan 26 2014
    
  • Sage
    [(2*n^2 +2*n -19 -(2*n-11)*(-1)^n)/8 for n in (2..60)] # G. C. Greubel, Dec 04 2019
    

Formula

a(n+2) = (period 8: repeat 1, 16, 1, 1, 1, 4, 1, 1)*A175628(n+1).
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12).
a(n+4) - a(n-4) = 0, 8, 8, ... = A168397.
From Colin Barker, Jan 26 2014: (Start)
a(n) = (n^2 -4)/4 for n even, a(n) = (n^2 +2*n -15)/4 for n odd.
G.f.: x^4*(3 + 2*x - 3*x^2)/ ((1-x)^3*(1+x)^2). (End)
a(n) = (2*n^2 + 2*n - 19 - (2*n - 11)*(-1)^n)/8. - Luce ETIENNE, Jul 26 2014
Sum_{n>=4} (-1)^n/a(n) = 11/48. - Amiram Eldar, Aug 21 2022

Extensions

More terms from Colin Barker, Jan 26 2014

A141721 A141631(n) mod 10.

Original entry on oeis.org

2, 7, 8, 5, 8, 7, 2, 3, 0, 3, 2, 7, 8, 5, 8, 7, 2, 3, 0, 3, 2, 7, 8, 5, 8, 7, 2, 3, 0, 3, 2, 7, 8, 5, 8, 7, 2, 3, 0, 3, 2, 7, 8, 5, 8, 7, 2, 3, 0, 3, 2, 7, 8, 5, 8, 7, 2, 3, 0, 3, 2, 7, 8, 5, 8, 7, 2, 3, 0, 3, 2, 7, 8, 5, 8, 7, 2, 3, 0, 3, 2, 7, 8, 5, 8, 7
Offset: 1

Views

Author

Paul Curtz, Sep 12 2008

Keywords

Comments

Mentioned in A010716.
The sequence and its first differences (5, 1, -3, 3, -1, -5, 1, -3, 3, -1) are both periodic with period length 10.

Programs

  • Mathematica
    Mod[#,10]&/@Table[3n^2-4n+3,{n,200}] (* Harvey P. Dale, Oct 28 2012 *)

Formula

a(n)=a(n-10), period 10 (2, 7, 8, 5, 8, 7, 2, 3, 0, 3).
Also: decimal expansion of the constant 309541367/1111111111. - R. J. Mathar, Oct 15 2008

Extensions

Edited by R. J. Mathar, Oct 15 2008
More terms from Harvey P. Dale, Oct 28 2012

A210032 a(n)=n for n=1,2,3 and 4; a(n)=5 for n >= 5.

Original entry on oeis.org

1, 2, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 1

Views

Author

A. Timothy Royappa, Mar 16 2012

Keywords

Comments

In atomic spectroscopy, a(n) is the number of D term symbols with spin multiplicity equal to n, i.e., there is one singlet-D term (n=1), and there are two doublet-D terms (n=2), three triple-D terms (n=3), four quartet-D terms (n=4) and five terms for every other D term of multiplicity 5 or higher (n >= 5).
Decimal expansion of 11111/9000. - Arkadiusz Wesolowski, Mar 29 2012

Crossrefs

Programs

Formula

a(n) = min(n,5). - Wesley Ivan Hurt, Apr 16 2014
From Elmo R. Oliveira, Jun 26 2024: (Start)
G.f.: x*(1+x+x^2+x^3+x^4)/(1-x) = x*(1-x^5)/(1-x)^2.
a(n) = 1 + A158411(n-1) = A101272(n+1) - 1 = A168093(n-1) - 2. (End)

A257936 Decimal expansion of 11/18.

Original entry on oeis.org

6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Bruno Berselli, May 13 2015

Keywords

Comments

Decimal expansion of Sum_{i>=1} 1/A028552(i).
Also, continued fraction expansion of 5+A001622.

Examples

			.6111111111111111111111111111111111111111111111111111111111111111...
		

Crossrefs

Cf. A010716 (decimal expansion of 5/9 = 10/18), A010722 (decimal expansion of 2/3 = 12/18).

Programs

Formula

Equals A020773 + A142464.
From Elmo R. Oliveira, Aug 05 2024: (Start)
G.f.: (6-5*x)/(1-x).
E.g.f.: exp(x) + 5.
a(n) = 1, n >= 1. (End)
Previous Showing 31-38 of 38 results.