cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A067273 a(n) = n*(a(n-1)*2+1), a(0) = 0.

Original entry on oeis.org

0, 1, 6, 39, 316, 3165, 37986, 531811, 8508984, 153161721, 3063234430, 67391157471, 1617387779316, 42052082262229, 1177458303342426, 35323749100272795, 1130359971208729456, 38432239021096801521, 1383560604759484854774, 52575302980860424481431, 2103012119234416979257260, 88326509007845513128804941
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 21 2002

Keywords

Crossrefs

Cf. A007526.

Programs

  • Maple
    a := n -> n*hypergeom([1,1-n],[],-2):
    seq(simplify(a(n)), n=0..17); # Peter Luschny, May 09 2017
  • Mathematica
    FoldList[2 #1*#2 + #2 &, 0, Range[19]] (* Robert G. Wilson v, Jul 07 2012 *)
    a[n_] := 2^(n-1)*Sqrt[E]*n*Gamma[n,1/2];
    Table[a[n] // FullSimplify, {n,0,20}] (* Gerry Martens, Jun 28 2015 *)
    nxt[{n_,a_}]:={n+1,(n+1)(2*a+1)}; NestList[nxt,{0,0},20][[;;,2]] (* Harvey P. Dale, Jun 26 2023 *)

Formula

E.g.f.: x*exp(x)/(1-2*x). a(n) = n!*Sum_{k=1..n} 2^(k-1)/(n-k)! = n*A010844(n-1). - Vladeta Jovovic, Feb 09 2003
a(n) ~ n! * exp(1/2) * 2^(n-1). - Vaclav Kotesovec, Oct 05 2013
a(n) = n*hypergeom([1,1-n], [], -2). - Peter Luschny, May 09 2017
a(n) = Sum_{k=1..n} 2^(k-1)*k!*binomial(n,k). - Ridouane Oudra, Jun 15 2025

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Nov 15 2008

A093302 a(n) = (a(n-1)+(2n-1))*(2n) with a(0) = 0.

Original entry on oeis.org

0, 2, 20, 150, 1256, 12650, 151932, 2127230, 34035920, 612646866, 12252937700, 269564629862, 6469551117240, 168208329048890, 4709833213369676, 141294996401091150, 4521439884834917792, 153728956084387206050
Offset: 0

Views

Author

Emrehan Halici (emrehan(AT)halici.com.tr), Apr 24 2004

Keywords

Crossrefs

a(n) = A007566(n)-1 = 2*A010844(n)-2n-2. Bisection of A077138.
Cf. A271476.

Programs

  • Mathematica
    RecurrenceTable[{a[0]==0,a[n]==(a[n-1]+2n-1)2n},a,{n,20}] (* Harvey P. Dale, May 20 2014 *)
  • PARI
    a(n)=2*floor(exp(1/2)*n!*2^n)-2*n-2
    
  • PARI
    x='x+O('x^99); concat(0, Vec(serlaplace((2*x+4*x^2)/(1-2*x)*exp(x)))) \\ Altug Alkan, Aug 01 2018
    
  • PARI
    a=vector(99); a[1]=2; for(n=2, #a, a[n] = 2*(a[n-1]+2*n-1)*n); concat(0,a) \\ Altug Alkan, Aug 01 2018

Formula

a(n) = 2 * floor(e^(1/2) * n! * 2^n) - 2n - 2.
E.g.f.: (2x+4x^2)/(1-2x) * exp(x).
a(n) = 2*A271476(n) for n >= 1. - Altug Alkan, Aug 01 2018

Extensions

Edited by Ralf Stephan, Apr 26 2004

A097817 E.g.f. exp(2x)/(1-3x).

Original entry on oeis.org

1, 5, 34, 314, 3784, 56792, 1022320, 21468848, 515252608, 13911820928, 417354628864, 13772702754560, 495817299168256, 19336874667570176, 812148736037963776, 36546693121708402688, 1754241269842003394560
Offset: 0

Views

Author

Paul Barry, Aug 26 2004

Keywords

Comments

Second binomial transform of n!3^n.

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[2x]/(1-3x),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Apr 02 2020 *)

Formula

a(n) = 3n*a(n-1)+2^n, n>0, a(0)=1.
a(n) ~ n! * exp(2/3) * 3^n. - Vaclav Kotesovec, Aug 04 2014
a(n) +(-3*n-2)*a(n-1) +6*(n-1)*a(n-2)=0. - R. J. Mathar, Dec 21 2014
From Peter Bala, Jan 30 2015: (Start)
a(n) = int {x = 0..inf} (3*x + 2)^n*exp(-x) dx.
The e.g.f. y = exp(2*x)/(1 - 3*x) satisfies the differential equation (1 - 3*x)*y' = (5 - 6*x)*y. Mathar's recurrence above follows easily from this.
The sequence b(n) = 3^n*n! also satisfies Mathar's recurrence with b(0) = 1, b(1) = 3. This leads to the continued fraction representation a(n) = 3^n*n!*( 1 + 2/(3 - 6/(8 - 12/(11 - ... - (6*n - 6)/(3*n + 2) )))) for n >= 2. Taking the limit gives the continued fraction representation exp(2/3) = 1 + 2/(3 - 6/(8 - 12/(11 - ... - (6*n - 6)/((3*n + 2) - ... )))). (End)
a(n) = 3^n*exp(2/3)*Gamma(n+1,2/3). - Gerry Martens, Jul 24 2015

A097819 E.g.f. exp(3x)/(1-4x).

Original entry on oeis.org

1, 7, 65, 807, 12993, 260103, 6243201, 174811815, 5593984641, 201383466759, 8055338729409, 354434904271143, 17012875405546305, 884669521090002183, 49541493181044905217, 2972489590862708661927, 190239333815213397410049, 12936274699434511153023495
Offset: 0

Views

Author

Paul Barry, Aug 26 2004

Keywords

Comments

Third binomial transform of n!4^n.

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[3x]/(1-4x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jun 16 2016 *)

Formula

a(n) = 4*a(n-1)+3^n, n>0, a(0)=1.
a(n) + (-4*n-3)*a(n-1) + 12*(n-1)*a(n-2) = 0. - R. J. Mathar, Dec 21 2014
From Peter Bala, Jan 30 2015: (Start)
a(n) = int {x = 0..inf} (4*x + 3)^n*exp(-x) dx.
a(n) ~ 4^n*n!*exp(3/4).
The e.g.f. y = exp(3*x)/(1 - 4*x) satisfies the differential equation (1 - 4*x)*y' = (7 - 12*x)*y. Mathar's recurrence above follows easily from this.
The sequence b(n) := 4^n*n! also satisfies Mathar's recurrence with b(0) = 1, b(1) = 4. This leads to the continued fraction representation a(n) = 4^n*n!*( 1 + 3/(4 - 12/(11 - 24/(15 - ... - (12*n - 12)/(4*n + 3) )))) for n >= 2. Taking the limit gives the continued fraction representation exp(3/4) = 1 + 3/(4 - 12/(11 - 24/(15 - ... - (12*n - 12)/((4*n + 3) - ... )))). (End)
a(n) = 4^n*exp(3/4)*Gamma(n+1,3/4). - Gerry Martens, Jul 24 2015

A193229 A double factorial triangle.

Original entry on oeis.org

1, 1, 1, 3, 3, 2, 15, 15, 12, 6, 105, 105, 90, 60, 24, 945, 945, 840, 630, 360, 120, 10395, 10395, 9450, 7560, 5040, 2520, 720, 135135, 135135, 124740, 103950, 75600, 45360, 20160, 5040, 2027025, 2027025, 1891890, 1621620, 1247400, 831600, 453600, 181440, 40320
Offset: 0

Views

Author

Gary W. Adamson, Jul 18 2011

Keywords

Comments

The double factorial triangle coefficients are T(n,k), n >= 0 and 0 <= k <= n.
The T(n,0) equal the double factorial numbers A001147(n) = (2*n-1)!!.
The T(n,n) equal the factorial numbers A000142(n) = n!.
The row sums equal the double factorial numbers A000165(n) = (2*n)!!.
The Kn21(n) sums, see A180662 for the definition of these and other triangle sums, equal A130905(n) while the Kn2p(n) sums equal A130905(n+2*p-2) - (n+2*p-2)!*A010844(p-2)/A000165(p-2), p >= 2. - Johannes W. Meijer, Jul 21 2011

Examples

			The first few rows of matrix M[i,j] are:
  1, 1, 0, 0, 0, 0, ...
  2, 2, 2, 0, 0, 0, ...
  3, 3, 3, 3, 0, 0, ...
  4, 4, 4, 4, 4, 0, ...
  5, 5, 5, 5, 5, 5, ...
The first few rows of triangle T(n,k) are:
       1;
       1,      1;
       3,      3,      2;
      15,     15,     12,      6;
     105,    105,     90,     60,    24;
     945,    945,    840,    630,   360,   120;
   10395,  10395,   9450,   7560,  5040,  2520,   720;
  135135, 135135, 124740, 103950, 75600, 45360, 20160, 5040;
		

Crossrefs

T(2*n,n) gives A166334.

Programs

  • Maple
    nmax:=7: M := Matrix(1..nmax+1,1..nmax+1): for i from 1 to nmax do for j from 1 to i+1 do M[i,j] := i od: od: for n from 0 to nmax do B := M^n: for k from 0 to n do T(n,k) := B[1,k+1] od: od: for n from 0 to nmax do seq(T(n,k),k=0..n) od: seq(seq(T(n,k),k=0..n),n=0..nmax); # Johannes W. Meijer, Jul 21 2011
  • PARI
    row(n)=(matrix(n,n,i,j,(i>j-2)*i)^(n-1))[1,]  \\ M. F. Hasler, Jul 24 2011

Formula

T(n,k) = the (k+1)-th term in the top row of M^n, where M is an infinite square production matrix; M[i,j] = i, i >= 1 and 1 <= j <= i+1, and M[i,j] = 0, i >= 1 and j >= i+2, see the examples.
It appears that T(n,k) = (2*n-k)!/(2^(n-k)*(n-k)!) with conjectural e.g.f. 1/(x*(1-2*z) + (1-x)*sqrt(1-2*z)) = 1 + (1+x)*z + (3+3*x+2*x^2)*z^2/2! + .... Cf. A102625. - Peter Bala, Jul 09 2012

Extensions

Corrected, edited and extended by Johannes W. Meijer, Jul 21 2011
More terms from Seiichi Manyama, Apr 06 2019

A295100 a(n) = n! * [x^n] exp(n*x)/(1 - 2*x).

Original entry on oeis.org

1, 3, 20, 201, 2688, 44815, 894528, 20792205, 551518208, 16438822587, 543934387200, 19783668211153, 784536321392640, 33689132092480839, 1557397919735103488, 77117362592836807125, 4072280214605427376128, 228441851811771488284915, 13566762607790788699226112, 850372121882700252639269337
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 14 2017

Keywords

Comments

The n-th term of the n-th binomial transform of A000165.

Crossrefs

Programs

  • Maple
    S:= series(exp(n*x)/(1-2*x),x,51):
    seq(n!*coeff(S,x,n),n=0..50); # Robert Israel, Nov 14 2017
  • Mathematica
    Table[n! SeriesCoefficient[Exp[n x]/(1 - 2 x), {x, 0, n}], {n, 0, 19}]

Formula

a(n) ~ 2^n * exp(n/2) * n!. - Vaclav Kotesovec, Nov 14 2017
a(n) = n! * Sum_{k=0..n} n^k*2^(n-k)/k! = 2^n*Gamma(n+1, n/2)*exp(n/2). - Robert Israel, Nov 14 2017

A331689 E.g.f.: exp(x/(1 - x)) / (1 - 2*x).

Original entry on oeis.org

1, 3, 15, 103, 897, 9471, 117703, 1685475, 27361953, 497111707, 10001175231, 220849928223, 5312868439585, 138337555830423, 3876986580776247, 116375171226474331, 3725295913465848513, 126686907674290095795, 4561317309742758852463, 173343622143918424951767
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 24 2020

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) b(n):= `if`(n<0, 0, 1+n*b(n-1)) end:
    a:= n-> n!*add(binomial(n, k)*b(k)/k!, k=0..n):
    seq(a(n), n=0..23);  # Alois P. Heinz, Jan 24 2020
  • Mathematica
    nmax = 19; CoefficientList[Series[Exp[x/(1 - x)]/(1 - 2 x), {x, 0, nmax}], x] Range[0, nmax]!
    A000522[0] = 1; A000522[n_] := Floor[Exp[1] n!]; a[n_] := Sum[Binomial[n, k]^2 k! A000522[n - k], {k, 0, n}]; Table[a[n], {n, 0, 19}]

Formula

a(n) = Sum_{k=0..n} binomial(n,k)^2 * k! * A000522(n-k).
a(n) = Sum_{k=0..n} binomial(n,k) * k! * 2^k * A000262(n-k).
a(n) ~ n! * exp(1) * 2^n. - Vaclav Kotesovec, Jan 26 2020

A073474 Triangle T(n,k) read by rows, where o.g.f. for T(n,k) is n!*Sum_{k=0..n} (1+x)^(n-k)/k!.

Original entry on oeis.org

1, 2, 1, 5, 6, 2, 16, 33, 24, 6, 65, 196, 228, 120, 24, 326, 1305, 2120, 1740, 720, 120, 1957, 9786, 20550, 23160, 14760, 5040, 720, 13700, 82201, 212352, 305970, 265440, 138600, 40320, 5040, 109601, 767208, 2356424, 4146576, 4571280, 3232320, 1431360, 362880, 40320
Offset: 0

Views

Author

Vladeta Jovovic, Aug 26 2002

Keywords

Comments

Row sums give A010844.

Examples

			Triangle begins:
    1;
    2,    1;
    5,    6,    2;
   16,   33,   24,    6;
   65,  196,  228,  120,  24;
  326, 1305, 2120, 1740, 720, 120;
  ...
		

Crossrefs

Cf. A000142, A000522, A073107, A010844 (row sums).

Programs

  • Maple
    G:=simplify(series(exp(x)/(1-x-x*y),x=0,13)): P[0]:=1: for n from 1 to 11 do P[n]:=sort(n!*coeff(G,x^n)) od: seq(seq(coeff(y*P[n],y^k),k=1..n+1),n=0..9);
    # second Maple program:
    b:= proc(n, k) option remember; `if`(k>n, 0, `if`(k=0, 1,
          n*(b(n-1, k-1)+b(n-1, k))))
        end:
    T:= (n, k)-> b(n+1, k+1)/(n+1):
    seq(seq(T(n, k), k=0..n), n=0..9);  # Alois P. Heinz, Sep 12 2019
  • Mathematica
    b[n_, k_] := b[n, k] = If[k>n, 0, If[k==0, 1, n (b[n-1, k-1]+b[n-1, k])]];
    T[n_, k_] := b[n+1, k+1]/(n+1);
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 09 2019, after Alois P. Heinz *)
    T[n_, k_] := Sum[Binomial[j, k] FactorialPower[n, j], {j, 0, n}]; (* Peter Luschny, Oct 16 2024 *)
  • SageMath
    def T(n, k): return sum(binomial(j, k) * falling_factorial(n, j) for j in range(n+1))
    for n in range(8): print([T(n, k) for k in range(n+1)])
    # Peter Luschny, Oct 16 2024

Formula

E.g.f.: exp(x)/(1-x-x*y). - Vladeta Jovovic, Oct 17 2003
T(n, k) = Sum_{j=0..n} binomial(j, k)*FallingFactorial(n, j). - Peter Luschny, Oct 16 2024

Extensions

Edited by Emeric Deutsch, Jun 10 2004

A111139 a(n) = n!*Sum_{k=0..n} Fibonacci(k)/k!.

Original entry on oeis.org

0, 1, 3, 11, 47, 240, 1448, 10149, 81213, 730951, 7309565, 80405304, 964863792, 12543229529, 175605213783, 2634078207355, 42145251318667, 716469272418936, 12896446903543432, 245032491167329389, 4900649823346594545
Offset: 0

Views

Author

Vladeta Jovovic, Oct 17 2005

Keywords

Comments

Eigensequence of a triangle with the Fibonacci series as the left border, the natural numbers (1, 2, 3, ...) as the right border; and the rest zeros. - Gary W. Adamson, Aug 01 2016

Crossrefs

Cf. A009102, A009551, A000142, A000166, A000522, A000023, A053486, A010844 (incomplete Gamma function values at other points).

Programs

  • Maple
    a:=n->sum(fibonacci (j)*n!/j!,j=0..n):seq(a(n),n=0..20); # Zerinvary Lajos, Mar 19 2007
  • Mathematica
    f[n_] := n!*Sum[Fibonacci[k]/k!, {k, 0, n}]; Table[ f[n], {n, 0, 20}] (* or *)
    Simplify[ Range[0, 20]!CoefficientList[ Series[2/Sqrt[5]*Exp[x/2]*Sinh[Sqrt[5]*x/2]/(1 - x), {x, 0, 20}], x]] (* Robert G. Wilson v, Oct 21 2005 *)
    Module[{nn=20,fibs,fct},fct=Range[0,nn]!;fibs=Accumulate[ Fibonacci[ Range[ 0,nn]]/fct];Times@@@Thread[{fct,fibs}]] (* Harvey P. Dale, Feb 19 2014 *)
    Round@Table[(E^GoldenRatio Gamma[n+1, GoldenRatio] - E^(1-GoldenRatio) Gamma[n+1, 1-GoldenRatio])/Sqrt[5], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 27 2015 *)
  • PARI
    vector(100, n, n--; n!*sum(k=0, n, fibonacci(k)/k!)) \\ Altug Alkan, Oct 28 2015

Formula

E.g.f.: (2/sqrt(5))*exp(x/2)*sinh(sqrt(5)*x/2)/(1-x).
Recurrence: a(n) = (n+1)*a(n-1) - (n-2)*a(n-2) - (n-2)*a(n-3). - Vaclav Kotesovec, Oct 18 2012
a(n) ~ 2*sqrt(e/5)*sinh(sqrt(5)/2)*n!. - Vaclav Kotesovec, Oct 18 2012
From Vladimir Reshetnikov, Oct 27 2015: (Start)
Let phi=(1+sqrt(5))/2.
a(n) = (phi^n*hypergeom([1,-n], [], 1-phi)-(1-phi)^n*hypergeom([1,-n], [], phi))/sqrt(5).
a(n) = (exp(phi)*Gamma(n+1, phi)-exp^(1-phi)*Gamma(n+1, 1-phi))/sqrt(5), where Gamma(a, x) is the upper incomplete Gamma function.
Gamma(n+1, phi)*exp(phi) = a(n)*phi + A263823(n).
a(n) ~ exp(phi-n)*n^(n+1/2)*sqrt(2*Pi/5)*(1-exp(-sqrt(5))).
(End)

A136807 Hankel transform of double factorial numbers n!*2^n=A000165(n).

Original entry on oeis.org

1, 4, 256, 589824, 86973087744, 1282470362637926400, 2723154477021188283432960000, 1133321924829207204666583887642624000000, 120746421332702772771144114237731253721340313600000000
Offset: 0

Views

Author

Paul Barry, Jan 23 2008

Keywords

Comments

By the properties of the Hankel transform, a(n)=2^(n(n+1))*A055209(n).
Also Hankel transform of A000354, A010844, A082032. - Philippe Deléham, Jan 23 2008

Crossrefs

Programs

  • Magma
    [1] cat [(&*[(2*k)^(2*(n-k+1)): k in [1..n]]): n in [1..10]]; // G. C. Greubel, Oct 14 2018
  • Mathematica
    Table[Product[(2k)^(2(n-k+1)),{k,n}],{n,0,10}] (* Harvey P. Dale, Apr 11 2013 *)
  • PARI
    for(n=0,10, print1(prod(k=1,n,(2*k)^(2*(n-k+1))), ", ")) \\ G. C. Greubel, Oct 14 2018
    

Formula

a(n) = Product_{k=1..n} (2k)^(2(n-k+1)).
a(n) ~ 2^((n+1)^2) * Pi^(n+1) * n^(n^2 + 2*n + 5/6) / (A^2 * exp(3*n^2/2 + 2*n - 1/6)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Feb 24 2019
Previous Showing 21-30 of 33 results. Next