A067273
a(n) = n*(a(n-1)*2+1), a(0) = 0.
Original entry on oeis.org
0, 1, 6, 39, 316, 3165, 37986, 531811, 8508984, 153161721, 3063234430, 67391157471, 1617387779316, 42052082262229, 1177458303342426, 35323749100272795, 1130359971208729456, 38432239021096801521, 1383560604759484854774, 52575302980860424481431, 2103012119234416979257260, 88326509007845513128804941
Offset: 0
-
a := n -> n*hypergeom([1,1-n],[],-2):
seq(simplify(a(n)), n=0..17); # Peter Luschny, May 09 2017
-
FoldList[2 #1*#2 + #2 &, 0, Range[19]] (* Robert G. Wilson v, Jul 07 2012 *)
a[n_] := 2^(n-1)*Sqrt[E]*n*Gamma[n,1/2];
Table[a[n] // FullSimplify, {n,0,20}] (* Gerry Martens, Jun 28 2015 *)
nxt[{n_,a_}]:={n+1,(n+1)(2*a+1)}; NestList[nxt,{0,0},20][[;;,2]] (* Harvey P. Dale, Jun 26 2023 *)
A093302
a(n) = (a(n-1)+(2n-1))*(2n) with a(0) = 0.
Original entry on oeis.org
0, 2, 20, 150, 1256, 12650, 151932, 2127230, 34035920, 612646866, 12252937700, 269564629862, 6469551117240, 168208329048890, 4709833213369676, 141294996401091150, 4521439884834917792, 153728956084387206050
Offset: 0
Emrehan Halici (emrehan(AT)halici.com.tr), Apr 24 2004
-
RecurrenceTable[{a[0]==0,a[n]==(a[n-1]+2n-1)2n},a,{n,20}] (* Harvey P. Dale, May 20 2014 *)
-
a(n)=2*floor(exp(1/2)*n!*2^n)-2*n-2
-
x='x+O('x^99); concat(0, Vec(serlaplace((2*x+4*x^2)/(1-2*x)*exp(x)))) \\ Altug Alkan, Aug 01 2018
-
a=vector(99); a[1]=2; for(n=2, #a, a[n] = 2*(a[n-1]+2*n-1)*n); concat(0,a) \\ Altug Alkan, Aug 01 2018
A097817
E.g.f. exp(2x)/(1-3x).
Original entry on oeis.org
1, 5, 34, 314, 3784, 56792, 1022320, 21468848, 515252608, 13911820928, 417354628864, 13772702754560, 495817299168256, 19336874667570176, 812148736037963776, 36546693121708402688, 1754241269842003394560
Offset: 0
-
With[{nn=20},CoefficientList[Series[Exp[2x]/(1-3x),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Apr 02 2020 *)
A097819
E.g.f. exp(3x)/(1-4x).
Original entry on oeis.org
1, 7, 65, 807, 12993, 260103, 6243201, 174811815, 5593984641, 201383466759, 8055338729409, 354434904271143, 17012875405546305, 884669521090002183, 49541493181044905217, 2972489590862708661927, 190239333815213397410049, 12936274699434511153023495
Offset: 0
-
With[{nn=20},CoefficientList[Series[Exp[3x]/(1-4x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jun 16 2016 *)
A193229
A double factorial triangle.
Original entry on oeis.org
1, 1, 1, 3, 3, 2, 15, 15, 12, 6, 105, 105, 90, 60, 24, 945, 945, 840, 630, 360, 120, 10395, 10395, 9450, 7560, 5040, 2520, 720, 135135, 135135, 124740, 103950, 75600, 45360, 20160, 5040, 2027025, 2027025, 1891890, 1621620, 1247400, 831600, 453600, 181440, 40320
Offset: 0
The first few rows of matrix M[i,j] are:
1, 1, 0, 0, 0, 0, ...
2, 2, 2, 0, 0, 0, ...
3, 3, 3, 3, 0, 0, ...
4, 4, 4, 4, 4, 0, ...
5, 5, 5, 5, 5, 5, ...
The first few rows of triangle T(n,k) are:
1;
1, 1;
3, 3, 2;
15, 15, 12, 6;
105, 105, 90, 60, 24;
945, 945, 840, 630, 360, 120;
10395, 10395, 9450, 7560, 5040, 2520, 720;
135135, 135135, 124740, 103950, 75600, 45360, 20160, 5040;
-
nmax:=7: M := Matrix(1..nmax+1,1..nmax+1): for i from 1 to nmax do for j from 1 to i+1 do M[i,j] := i od: od: for n from 0 to nmax do B := M^n: for k from 0 to n do T(n,k) := B[1,k+1] od: od: for n from 0 to nmax do seq(T(n,k),k=0..n) od: seq(seq(T(n,k),k=0..n),n=0..nmax); # Johannes W. Meijer, Jul 21 2011
-
row(n)=(matrix(n,n,i,j,(i>j-2)*i)^(n-1))[1,] \\ M. F. Hasler, Jul 24 2011
A295100
a(n) = n! * [x^n] exp(n*x)/(1 - 2*x).
Original entry on oeis.org
1, 3, 20, 201, 2688, 44815, 894528, 20792205, 551518208, 16438822587, 543934387200, 19783668211153, 784536321392640, 33689132092480839, 1557397919735103488, 77117362592836807125, 4072280214605427376128, 228441851811771488284915, 13566762607790788699226112, 850372121882700252639269337
Offset: 0
-
S:= series(exp(n*x)/(1-2*x),x,51):
seq(n!*coeff(S,x,n),n=0..50); # Robert Israel, Nov 14 2017
-
Table[n! SeriesCoefficient[Exp[n x]/(1 - 2 x), {x, 0, n}], {n, 0, 19}]
A331689
E.g.f.: exp(x/(1 - x)) / (1 - 2*x).
Original entry on oeis.org
1, 3, 15, 103, 897, 9471, 117703, 1685475, 27361953, 497111707, 10001175231, 220849928223, 5312868439585, 138337555830423, 3876986580776247, 116375171226474331, 3725295913465848513, 126686907674290095795, 4561317309742758852463, 173343622143918424951767
Offset: 0
-
b:= proc(n) b(n):= `if`(n<0, 0, 1+n*b(n-1)) end:
a:= n-> n!*add(binomial(n, k)*b(k)/k!, k=0..n):
seq(a(n), n=0..23); # Alois P. Heinz, Jan 24 2020
-
nmax = 19; CoefficientList[Series[Exp[x/(1 - x)]/(1 - 2 x), {x, 0, nmax}], x] Range[0, nmax]!
A000522[0] = 1; A000522[n_] := Floor[Exp[1] n!]; a[n_] := Sum[Binomial[n, k]^2 k! A000522[n - k], {k, 0, n}]; Table[a[n], {n, 0, 19}]
A073474
Triangle T(n,k) read by rows, where o.g.f. for T(n,k) is n!*Sum_{k=0..n} (1+x)^(n-k)/k!.
Original entry on oeis.org
1, 2, 1, 5, 6, 2, 16, 33, 24, 6, 65, 196, 228, 120, 24, 326, 1305, 2120, 1740, 720, 120, 1957, 9786, 20550, 23160, 14760, 5040, 720, 13700, 82201, 212352, 305970, 265440, 138600, 40320, 5040, 109601, 767208, 2356424, 4146576, 4571280, 3232320, 1431360, 362880, 40320
Offset: 0
Triangle begins:
1;
2, 1;
5, 6, 2;
16, 33, 24, 6;
65, 196, 228, 120, 24;
326, 1305, 2120, 1740, 720, 120;
...
-
G:=simplify(series(exp(x)/(1-x-x*y),x=0,13)): P[0]:=1: for n from 1 to 11 do P[n]:=sort(n!*coeff(G,x^n)) od: seq(seq(coeff(y*P[n],y^k),k=1..n+1),n=0..9);
# second Maple program:
b:= proc(n, k) option remember; `if`(k>n, 0, `if`(k=0, 1,
n*(b(n-1, k-1)+b(n-1, k))))
end:
T:= (n, k)-> b(n+1, k+1)/(n+1):
seq(seq(T(n, k), k=0..n), n=0..9); # Alois P. Heinz, Sep 12 2019
-
b[n_, k_] := b[n, k] = If[k>n, 0, If[k==0, 1, n (b[n-1, k-1]+b[n-1, k])]];
T[n_, k_] := b[n+1, k+1]/(n+1);
Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 09 2019, after Alois P. Heinz *)
T[n_, k_] := Sum[Binomial[j, k] FactorialPower[n, j], {j, 0, n}]; (* Peter Luschny, Oct 16 2024 *)
-
def T(n, k): return sum(binomial(j, k) * falling_factorial(n, j) for j in range(n+1))
for n in range(8): print([T(n, k) for k in range(n+1)])
# Peter Luschny, Oct 16 2024
A111139
a(n) = n!*Sum_{k=0..n} Fibonacci(k)/k!.
Original entry on oeis.org
0, 1, 3, 11, 47, 240, 1448, 10149, 81213, 730951, 7309565, 80405304, 964863792, 12543229529, 175605213783, 2634078207355, 42145251318667, 716469272418936, 12896446903543432, 245032491167329389, 4900649823346594545
Offset: 0
-
a:=n->sum(fibonacci (j)*n!/j!,j=0..n):seq(a(n),n=0..20); # Zerinvary Lajos, Mar 19 2007
-
f[n_] := n!*Sum[Fibonacci[k]/k!, {k, 0, n}]; Table[ f[n], {n, 0, 20}] (* or *)
Simplify[ Range[0, 20]!CoefficientList[ Series[2/Sqrt[5]*Exp[x/2]*Sinh[Sqrt[5]*x/2]/(1 - x), {x, 0, 20}], x]] (* Robert G. Wilson v, Oct 21 2005 *)
Module[{nn=20,fibs,fct},fct=Range[0,nn]!;fibs=Accumulate[ Fibonacci[ Range[ 0,nn]]/fct];Times@@@Thread[{fct,fibs}]] (* Harvey P. Dale, Feb 19 2014 *)
Round@Table[(E^GoldenRatio Gamma[n+1, GoldenRatio] - E^(1-GoldenRatio) Gamma[n+1, 1-GoldenRatio])/Sqrt[5], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 27 2015 *)
-
vector(100, n, n--; n!*sum(k=0, n, fibonacci(k)/k!)) \\ Altug Alkan, Oct 28 2015
A136807
Hankel transform of double factorial numbers n!*2^n=A000165(n).
Original entry on oeis.org
1, 4, 256, 589824, 86973087744, 1282470362637926400, 2723154477021188283432960000, 1133321924829207204666583887642624000000, 120746421332702772771144114237731253721340313600000000
Offset: 0
-
[1] cat [(&*[(2*k)^(2*(n-k+1)): k in [1..n]]): n in [1..10]]; // G. C. Greubel, Oct 14 2018
-
Table[Product[(2k)^(2(n-k+1)),{k,n}],{n,0,10}] (* Harvey P. Dale, Apr 11 2013 *)
-
for(n=0,10, print1(prod(k=1,n,(2*k)^(2*(n-k+1))), ", ")) \\ G. C. Greubel, Oct 14 2018
Comments