A152049
Number of conjugacy classes of primitive elements in GF(2^n) which have trace 0.
Original entry on oeis.org
0, 0, 1, 1, 3, 2, 9, 9, 23, 29, 89, 72, 315, 375, 899, 1031, 3855, 3886, 13797, 12000, 42328, 59989, 178529, 138256, 647969, 859841, 2101143, 2370917, 9204061, 8911060, 34636833, 33556537, 105508927, 168423669, 464635937
Offset: 1
a(3)=1 because of the two primitive degree 3 polynomials over GF(2), namely t^3+t+1 and t^3+t^2+1, only the former has a zero next-to-highest coefficient.
Similarly, a(13)=315, because of half (4096) of the 8192 elements of GF(2^13) have trace 0 and all except 0 (since 1 has trace 1) are primitive, so there are 4095/13=315 conjugacy classes of primitive elements of trace 0.
-
a := function(n)
local q,k,cnt,x; q:=2^n; k:=GF(2,n); cnt:=0;
for x in k do
if Trace(k, GF(2), x)=0*Z(2) and Order(x)=q-1 then
cnt := cnt+1;
fi;
od;
return cnt/n;
end;
for n in [1..32] do Print (a(n), ", "); od;
More terms (13797...8911060) by
Joerg Arndt, Jun 26 2011.
More terms (34636833...464635937) by
Joerg Arndt, Jul 03 2011.
A295496
a(n) = phi(6^n-1)/n, where phi is Euler's totient function (A000010).
Original entry on oeis.org
4, 12, 56, 216, 1240, 5040, 31992, 139968, 828576, 3720000, 25238048, 104509440, 803499840, 3687014016, 24373440000, 110630707200, 790546192128, 3463116249600, 25522921047520, 108957312000000, 816244048599840, 3924124012353600, 26682733370563200
Offset: 1
-
Array[EulerPhi[6^# - 1]/# &, 25] (* Paolo Xausa, Jun 17 2024 *)
-
{a(n) = eulerphi(6^n-1)/n}
A295497
a(n) = phi(10^n-1)/n, where phi is Euler's totient function (A000010).
Original entry on oeis.org
6, 30, 216, 1500, 12960, 77760, 948192, 7344000, 72071856, 589032000, 6060314304, 38491200000, 496775732544, 4309959326400, 40676940288000, 345599944704000, 3921566733817776, 24555273410096640, 350877192982456140, 2915072245440000000
Offset: 1
-
Array[EulerPhi[10^# - 1]/# &, 25] (* Paolo Xausa, Jun 17 2024 *)
-
{a(n) = eulerphi(10^n-1)/n}
A319166
Number of primitive polynomials of degree n over GF(11).
Original entry on oeis.org
4, 16, 144, 960, 12880, 62208, 1087632, 7027200, 85098816, 691398400, 10374307328, 49985372160, 1061265441600, 7064952935040, 90426613939200, 708867057254400, 11892871258806912, 65078340559220736, 1287559798913990448, 8819554320783360000, 111715065087913437696
Offset: 1
-
Array[EulerPhi[11^# - 1]/# &, 25] (* Paolo Xausa, Jun 17 2024 *)
-
{a(n) = eulerphi(11^n-1)/n}
A056742
a(n) = phi(2^n - 1)/2.
Original entry on oeis.org
1, 3, 4, 15, 18, 63, 64, 216, 300, 968, 864, 4095, 5292, 13500, 16384, 65535, 69984, 262143, 240000, 889056, 1320352, 4105040, 3317760, 16200000, 22358700, 56733696, 66382848, 266913216, 267300000, 1073741823, 1073741824
Offset: 2
-
Table[EulerPhi[(2^n - 1)]/2, {n, 2, 40}]
-
a(n) = eulerphi(2^n - 1)/2; \\ Amiram Eldar, Jun 09 2024
A069925
a(n) = phi(2^n+1)/(2*n).
Original entry on oeis.org
1, 1, 1, 2, 2, 4, 6, 16, 18, 40, 62, 160, 210, 448, 660, 2048, 2570, 5184, 9198, 24672, 32508, 76032, 121574, 344064, 405000, 1005888, 1569780, 4511520, 6066336, 12672000, 23091222, 67004160, 85342752, 200422656, 289531200, 892477440
Offset: 1
- Amiram Eldar, Table of n, a(n) for n = 1..1090
- Joerg Arndt, Matters Computational (The Fxtbook), section 40.8 "Self-reciprocal polynomials", pp. 846-848.
- Helmut Meyn and Werner Götz, Self-reciprocal Polynomials Over Finite Fields, Séminaire Lotharingien de Combinatoire, B21d, pp. 82-90, 1989.
Cf.
A011260 (degree-n primitive polynomials).
Cf.
A000048 (degree-2*n irreducible self-reciprocal polynomials).
-
Table[EulerPhi[2^n+1]/(2n),{n,50}] (* Harvey P. Dale, Nov 15 2011 *)
-
a(n) = eulerphi(2^n+1)/(2*n); /* Joerg Arndt, Jul 04 2012 */
A158502
Array T(n,k) read by antidiagonals: number of primitive polynomials of degree k over GF(prime(n)).
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 2, 4, 4, 2, 4, 8, 20, 8, 6, 4, 16, 36, 48, 22, 6, 8, 24, 144, 160, 280, 48, 18, 6, 48, 240, 960, 1120, 720, 156, 16, 10, 48, 816, 1536, 12880, 6048, 5580, 320, 48, 12, 80, 756, 5376, 24752, 62208, 37856, 14976, 1008, 60, 8, 96, 1560, 8640, 141984, 224640, 1087632, 192000, 99360
Offset: 1
The array starts in row n=1 with columns k>=1 as
1, 1, 2, 2, 6, 6, 18, 16, 48, 60, A011260
1, 2, 4, 8, 22, 48, 156, 320, 1008, 2640, A027385
2, 4, 20, 48, 280, 720, 5580, 14976, 99360, 291200, A027741
2, 8, 36, 160, 1120, 6048, 37856, 192000, 1376352, 8512000, A027743
4,16, 144, 960, 12880, 62208,1087632,7027200,85098816,691398400, A319166
4,24, 240, 1536, 24752, 224640,2988024,21934080
-
A := proc(n,k) local p ; p := ithprime(n) ; if k = 0 then 1; else numtheory[phi](p^k-1)/k ; end if;end proc:
-
t[n_, k_] := If[k == 0, 1, p = Prime[n]; EulerPhi[p^k - 1]/k]; Flatten[ Table[t[n - k + 1, k], {n, 1, 11}, {k, 1, n}]] (* Jean-François Alcover, Jun 04 2012, after Maple *)
A163303
a(n) = n^3 + 73*n^2 + n + 67.
Original entry on oeis.org
67, 142, 369, 754, 1303, 2022, 2917, 3994, 5259, 6718, 8377, 10242, 12319, 14614, 17133, 19882, 22867, 26094, 29569, 33298, 37287, 41542, 46069, 50874, 55963, 61342, 67017, 72994, 79279, 85878, 92797, 100042, 107619, 115534, 123793, 132402
Offset: 0
- Marco Cugiani, Metodi numerico statistici (Collezione di Matematica applicata n.7), UTET Torino, 1980, pp. 78-84
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Tom Hansen, G. L. Mullen, Primitive Polynomials over finite fields, Math. Comp. 59 (200) (1992) 639
- Sean E. O'Connor, Computing primitive Polynomials - Theory and Algorithm
- Eric Weisstein, MathWorld: Primitive Polynomial
- Wikipedia, Primitive Polynomial
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
[n^3+73*n^2+n+67: n in [0..40]];
-
I:=[67,142,369,754]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..60]]; // Vincenzo Librandi, Sep 13 2015
-
Table[n^3 + 73 n^2 + n + 67, {n, 0, 60}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {67, 142, 369, 754}, 50] (* Vincenzo Librandi, Sep 13 2015 *)
-
first(m)=vector(m,i,i--;i^3 + 73*i^2 + i + 67) \\ Anders Hellström, Sep 13 2015
A163304
a(n) = n^4 + 984*n^3 + 902*n^2 + 394*n + 858.
Original entry on oeis.org
858, 3139, 13142, 36807, 80098, 149003, 249534, 387727, 569642, 801363, 1088998, 1438679, 1856562, 2348827, 2921678, 3581343, 4334074, 5186147, 6143862, 7213543, 8401538, 9714219, 11157982, 12739247, 14464458, 16340083, 18372614, 20568567, 22934482, 25476923
Offset: 0
- Marco Cugiani, Metodi numerico statistici (Collezione di Matematica applicata n.7), UTET Torino, 1980, pp.78-84
A319183
a(n) = phi(n^n - 1)/n where phi is A000010.
Original entry on oeis.org
1, 4, 32, 280, 5040, 37856, 829440, 15676416, 589032000, 10374307328, 388566097920, 7619466454080, 390751784579520, 11138729990400000, 575561351791902720, 24328359845627701248, 1640651748984970444800, 34709116765970413844280, 2459108342476800000000000
Offset: 2
-
Table[EulerPhi[n^n-1]/n,{n,20}] (* Harvey P. Dale, Aug 04 2020 *)
-
{a(n) = eulerphi(n^n-1)/n}
Comments