cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A152049 Number of conjugacy classes of primitive elements in GF(2^n) which have trace 0.

Original entry on oeis.org

0, 0, 1, 1, 3, 2, 9, 9, 23, 29, 89, 72, 315, 375, 899, 1031, 3855, 3886, 13797, 12000, 42328, 59989, 178529, 138256, 647969, 859841, 2101143, 2370917, 9204061, 8911060, 34636833, 33556537, 105508927, 168423669, 464635937
Offset: 1

Views

Author

David A. Madore, Nov 21 2008

Keywords

Comments

Also number of primitive polynomials of degree n over GF(2) whose second-highest coefficient is 0.
Always less than A011260 (and exactly one half of it when 2^n-1 is prime).

Examples

			a(3)=1 because of the two primitive degree 3 polynomials over GF(2), namely t^3+t+1 and t^3+t^2+1, only the former has a zero next-to-highest coefficient.
Similarly, a(13)=315, because of half (4096) of the 8192 elements of GF(2^13) have trace 0 and all except 0 (since 1 has trace 1) are primitive, so there are 4095/13=315 conjugacy classes of primitive elements of trace 0.
		

Crossrefs

Cf. A192507 (GF(3^n)), A192508 (GF(5^n)), A192509 (GF(7^n)), A192510 (GF(11^n)), A192511 (GF(13^n)).

Programs

  • GAP
    a := function(n)
        local q,k,cnt,x; q:=2^n; k:=GF(2,n); cnt:=0;
        for x in k do
            if Trace(k, GF(2), x)=0*Z(2) and Order(x)=q-1 then
                cnt := cnt+1;
            fi;
        od;
        return cnt/n;
    end;
    for n in [1..32] do  Print (a(n), ", ");  od;

Formula

a(n) = A192211(n)/n. [Joerg Arndt, Jul 03 2011]

Extensions

More terms (13797...8911060) by Joerg Arndt, Jun 26 2011.
More terms (34636833...464635937) by Joerg Arndt, Jul 03 2011.

A295496 a(n) = phi(6^n-1)/n, where phi is Euler's totient function (A000010).

Original entry on oeis.org

4, 12, 56, 216, 1240, 5040, 31992, 139968, 828576, 3720000, 25238048, 104509440, 803499840, 3687014016, 24373440000, 110630707200, 790546192128, 3463116249600, 25522921047520, 108957312000000, 816244048599840, 3924124012353600, 26682733370563200
Offset: 1

Views

Author

Seiichi Manyama, Nov 22 2017

Keywords

Crossrefs

Column k=6 of A369291.
phi(k^n-1)/n: A011260 (k=2), A027385 (k=3), A027695 (k=4), A027741 (k=5), this sequence (k=6), A027743 (k=7), A027744 (k=8), A027745 (k=9), A295497 (k=10), A319166 (k=11).

Programs

  • Mathematica
    Array[EulerPhi[6^# - 1]/# &, 25] (* Paolo Xausa, Jun 17 2024 *)
  • PARI
    {a(n) = eulerphi(6^n-1)/n}

A295497 a(n) = phi(10^n-1)/n, where phi is Euler's totient function (A000010).

Original entry on oeis.org

6, 30, 216, 1500, 12960, 77760, 948192, 7344000, 72071856, 589032000, 6060314304, 38491200000, 496775732544, 4309959326400, 40676940288000, 345599944704000, 3921566733817776, 24555273410096640, 350877192982456140, 2915072245440000000
Offset: 1

Views

Author

Seiichi Manyama, Nov 22 2017

Keywords

Crossrefs

Column k=10 of A369291.
phi(k^n-1)/n: A011260 (k=2), A027385 (k=3), A027695 (k=4), A027741 (k=5), A295496 (k=6), A027743 (k=7), A027744 (k=8), A027745 (k=9), this sequence (k=10), A319166 (k=11).

Programs

  • Mathematica
    Array[EulerPhi[10^# - 1]/# &, 25] (* Paolo Xausa, Jun 17 2024 *)
  • PARI
    {a(n) = eulerphi(10^n-1)/n}

A319166 Number of primitive polynomials of degree n over GF(11).

Original entry on oeis.org

4, 16, 144, 960, 12880, 62208, 1087632, 7027200, 85098816, 691398400, 10374307328, 49985372160, 1061265441600, 7064952935040, 90426613939200, 708867057254400, 11892871258806912, 65078340559220736, 1287559798913990448, 8819554320783360000, 111715065087913437696
Offset: 1

Views

Author

Seiichi Manyama, Sep 12 2018

Keywords

Crossrefs

Column k=11 of A369291.
phi(k^n-1)/n: A011260 (k=2), A027385 (k=3), A027695 (k=4), A027741 (k=5), A295496 (k=6), A027743 (k=7), A027744 (k=8), A027745 (k=9), A295497 (k=10), this sequence (k=11).
Cf. A000010.

Programs

  • Mathematica
    Array[EulerPhi[11^# - 1]/# &, 25] (* Paolo Xausa, Jun 17 2024 *)
  • PARI
    {a(n) = eulerphi(11^n-1)/n}

Formula

a(n) = phi(11^n - 1)/n where phi is A000010.

A056742 a(n) = phi(2^n - 1)/2.

Original entry on oeis.org

1, 3, 4, 15, 18, 63, 64, 216, 300, 968, 864, 4095, 5292, 13500, 16384, 65535, 69984, 262143, 240000, 889056, 1320352, 4105040, 3317760, 16200000, 22358700, 56733696, 66382848, 266913216, 267300000, 1073741823, 1073741824
Offset: 2

Views

Author

Robert G. Wilson v, Aug 14 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Table[EulerPhi[(2^n - 1)]/2, {n, 2, 40}]
  • PARI
    a(n) = eulerphi(2^n - 1)/2; \\ Amiram Eldar, Jun 09 2024

Formula

a(n) = A000010(A000225(n))/2 = A053287(n)/2. - Amiram Eldar, Jun 09 2024

A069925 a(n) = phi(2^n+1)/(2*n).

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 6, 16, 18, 40, 62, 160, 210, 448, 660, 2048, 2570, 5184, 9198, 24672, 32508, 76032, 121574, 344064, 405000, 1005888, 1569780, 4511520, 6066336, 12672000, 23091222, 67004160, 85342752, 200422656, 289531200, 892477440
Offset: 1

Views

Author

Benoit Cloitre, Apr 25 2002

Keywords

Comments

Number of primitive self-reciprocal polynomials of degree 2*n over GF(2). - Joerg Arndt, Jul 04 2012

Crossrefs

Cf. A011260 (degree-n primitive polynomials).
Cf. A000048 (degree-2*n irreducible self-reciprocal polynomials).

Programs

  • Mathematica
    Table[EulerPhi[2^n+1]/(2n),{n,50}] (* Harvey P. Dale, Nov 15 2011 *)
  • PARI
    a(n) = eulerphi(2^n+1)/(2*n); /* Joerg Arndt, Jul 04 2012 */

Formula

a(n) = phi(2^n+1)/(2*n).
a(n) = A053285(n)/(2*n). - Amiram Eldar, Jun 02 2022

A158502 Array T(n,k) read by antidiagonals: number of primitive polynomials of degree k over GF(prime(n)).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 4, 4, 2, 4, 8, 20, 8, 6, 4, 16, 36, 48, 22, 6, 8, 24, 144, 160, 280, 48, 18, 6, 48, 240, 960, 1120, 720, 156, 16, 10, 48, 816, 1536, 12880, 6048, 5580, 320, 48, 12, 80, 756, 5376, 24752, 62208, 37856, 14976, 1008, 60, 8, 96, 1560, 8640, 141984, 224640, 1087632, 192000, 99360
Offset: 1

Views

Author

R. J. Mathar, Aug 29 2011

Keywords

Examples

			The array starts in row n=1 with columns k>=1 as
1, 1,  2,     2,     6,      6,     18,     16,      48,       60,  A011260
1, 2,  4,     8,    22,     48,    156,    320,    1008,     2640,  A027385
2, 4,  20,   48,   280,    720,   5580,  14976,   99360,   291200,  A027741
2, 8,  36,  160,  1120,   6048,  37856, 192000, 1376352,  8512000,  A027743
4,16, 144,  960, 12880,  62208,1087632,7027200,85098816,691398400,  A319166
4,24, 240, 1536, 24752, 224640,2988024,21934080
		

Crossrefs

Programs

  • Maple
    A := proc(n,k) local p ; p := ithprime(n) ; if k = 0 then 1; else numtheory[phi](p^k-1)/k ; end if;end proc:
  • Mathematica
    t[n_, k_] := If[k == 0, 1, p = Prime[n]; EulerPhi[p^k - 1]/k]; Flatten[ Table[t[n - k + 1, k], {n, 1, 11}, {k, 1, n}]] (* Jean-François Alcover, Jun 04 2012, after Maple *)

Formula

T(n,k) = A000010(p^k-1)/k = A369291(k, p) with p=A000040(n).

A163303 a(n) = n^3 + 73*n^2 + n + 67.

Original entry on oeis.org

67, 142, 369, 754, 1303, 2022, 2917, 3994, 5259, 6718, 8377, 10242, 12319, 14614, 17133, 19882, 22867, 26094, 29569, 33298, 37287, 41542, 46069, 50874, 55963, 61342, 67017, 72994, 79279, 85878, 92797, 100042, 107619, 115534, 123793, 132402
Offset: 0

Views

Author

Vincenzo Librandi, Jul 24 2009, Jul 25 2009

Keywords

Comments

Sequences generated by primitive polynomial J(p)=J(1031), for k=3.
Comment (entirely taken from Cugiani's text - see References) from Vincenzo Librandi , Aug 23 2011: (Start)
This deals with primitive polynomials in GF_k(p). There are p^k monic k-th order polynomials J(p) = x^k + a(k-1)*x^(k-1) + ... + a(0), because there are k independent coefficients a(.), each restricted modulo the prime p. phi(p^k-1)/k of these polynomials are primitive, where phi=A000010. [Example for p=7 and k=2: phi(7^2-1)/2 = phi(48)/2 = 16/2=8. See A011260 for p=2, A027385 for p=3, A027741 for p=5 etc.] Of these sets of primitive polynomials we select with p=1031 the polynomial x^3+73*x^2+x+67 for k=3 in A163303 and x^4+984*x^3+90*x^2+394-x+858 for k=4 in A163304 by the following criteria (This could be extended to k=5, 6,...): Let r = (p^k -1)/(p-1). We demand (see Theorem 1 in Hansen-Mullen)
i) (-1)^k a(0) is a primitive element of J(p).
ii) The remainder of the division of x^r through the polynomial equals (-1)^k a(0).
iii) The remainder of the division of x^(r/q) through the polynomial must have positive degree for each prime divisor q|r.
(End)

References

  • Marco Cugiani, Metodi numerico statistici (Collezione di Matematica applicata n.7), UTET Torino, 1980, pp. 78-84

Crossrefs

Cf. A163304.

Programs

  • Magma
    [n^3+73*n^2+n+67: n in [0..40]];
    
  • Magma
    I:=[67,142,369,754]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..60]]; // Vincenzo Librandi, Sep 13 2015
    
  • Mathematica
    Table[n^3 + 73 n^2 + n + 67, {n, 0, 60}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {67, 142, 369, 754}, 50] (* Vincenzo Librandi, Sep 13 2015 *)
  • PARI
    first(m)=vector(m,i,i--;i^3 + 73*i^2 + i + 67) \\ Anders Hellström, Sep 13 2015

Formula

G.f.: ( 67-126*x+203*x^2-138*x^3 ) / (x-1)^4 . - R. J. Mathar, Aug 21 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Sep 13 2015
E.g.f: (67 + 75*x + 76*x^2 + x^3)*exp(x). - G. C. Greubel, Dec 18 2016

A163304 a(n) = n^4 + 984*n^3 + 902*n^2 + 394*n + 858.

Original entry on oeis.org

858, 3139, 13142, 36807, 80098, 149003, 249534, 387727, 569642, 801363, 1088998, 1438679, 1856562, 2348827, 2921678, 3581343, 4334074, 5186147, 6143862, 7213543, 8401538, 9714219, 11157982, 12739247, 14464458, 16340083, 18372614, 20568567, 22934482, 25476923
Offset: 0

Views

Author

Vincenzo Librandi, Jul 24 2009

Keywords

Comments

Comment (entirely taken from Cugiani's text - see References) from Vincenco Librandi, Aug 23 2011: (Start)
This deals with primitive polynomials in GF_k(p). There are p^k monic k-th order polynomials J(p) = x^k + a(k-1)*x^(k-1) + ... + a(0), because there are k independent coefficients a(.), each restricted modulo the prime p. phi(p^k-1)/k of these polynomials are primitive, where phi=A000010. [Example for p=7 and k=2: phi(7^2-1)/2 = phi(48)/2 = 16/2=8. See A011260 for p=2, A027385 for p=3, A027741 for p=5 etc.] Of these sets of primitive polynomials we select with p=1031 the polynomial x^3+73*x^2+x+67 for k=3 in A163303 and x^4+984*x^3+90*x^2+394-x+858 for k=4 in A163304 by the following criteria (This could be extended to k=5, 6,...): Let r = (p^k -1)/(p-1). We demand (see Theorem 1 in Hansen-Mullen)
i) (-1)^k a(0) is a primitive element of J(p).
ii) The remainder of the division of x^r through the polynomial equals (-1)^k a(0).
iii) The remainder of the division of x^(r/q) through the polynomial must have positive degree for each prime divisor q|r.
(End)

References

  • Marco Cugiani, Metodi numerico statistici (Collezione di Matematica applicata n.7), UTET Torino, 1980, pp.78-84

Crossrefs

Cf. A163303.

Programs

Formula

G.f.: (858-1151*x+6027*x^2-6093*x^3+383*x^4)/(1-x)^5. - Bruno Berselli, Aug 24 2011
From G. C. Greubel, Dec 18 2016: (Start)
a(n) = 5*a(n-) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
E.g.f.: (858 + 2281*x + 3861*x^2 + 990*x^3 + x^4)*exp(x). (End)

Extensions

Corrected and extended by Harvey P. Dale, Aug 16 2011
Offset changed from 1 to 0 by Vincenzo Librandi, Aug 17 2011

A319183 a(n) = phi(n^n - 1)/n where phi is A000010.

Original entry on oeis.org

1, 4, 32, 280, 5040, 37856, 829440, 15676416, 589032000, 10374307328, 388566097920, 7619466454080, 390751784579520, 11138729990400000, 575561351791902720, 24328359845627701248, 1640651748984970444800, 34709116765970413844280, 2459108342476800000000000
Offset: 2

Views

Author

Seiichi Manyama, Sep 12 2018

Keywords

Comments

Main diagonal of the array T(n,k) = phi(n^k-1)/k for n > 1 and k > 1, which starts
1, 2, 2, 6, 6, 18, 16, ... A011260
2, 4, 8, 22, 48, 156, 320, ... A027385
4, 12, 32, 120, 288, 1512, 4096, ... A027695
4, 20, 48, 280, 720, 5580, 14976, ... A027741
12, 56, 216, 1240, 5040, 31992, 139968, ... A295496
8, 36, 160, 1120, 6048, 37856, 192000, ... A027743
18, 144, 432, 5400, 23328, 254016, 829440, ... A027744

Crossrefs

A diagonal of A369291.

Programs

  • Mathematica
    Table[EulerPhi[n^n-1]/n,{n,20}] (* Harvey P. Dale, Aug 04 2020 *)
  • PARI
    {a(n) = eulerphi(n^n-1)/n}
Previous Showing 11-20 of 24 results. Next