cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 148 results. Next

A073642 Replace 2^k in the binary representation of n with k (i.e., if n = 2^b + 2^c + 2^d + ... then a(n) = b + c + d + ...).

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 6, 6, 4, 4, 5, 5, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 10, 10, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, 11, 11, 9, 9, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 14, 14, 15, 15, 6, 6, 7, 7, 8, 8, 9, 9, 9, 9, 10, 10, 11, 11, 12, 12, 10, 10, 11, 11, 12, 12, 13, 13
Offset: 0

Views

Author

Benoit Cloitre, Aug 29 2002

Keywords

Comments

For n >= 1, a(n) is the n-th row sum of the irregular triangle A133457. - Vladimir Shevelev, Dec 14 2015
For n >= 0, 2^a(n) is the number of partitions of n whose dimension (given by the hook-length formula) is an odd integer. See the MacDonald reference. - Arvind Ayyer, May 12 2016

Examples

			9 = 2^3 + 2^0, hence a(9) = 3 + 0 = 3;
25 = 2^4 + 2^3 + 2^0, hence a(25) = 4 + 3 + 0 = 7.
		

Crossrefs

Programs

  • Haskell
    a073642 = sum . zipWith (*) [0..] . a030308_row
    -- Reinhard Zumkeller, Jun 01 2013
    
  • Maple
    A073642 := proc(n)
            local bdgs ;
            bdgs := convert(n,base,2) ;
            add( op(i,bdgs)*(i-1), i=1..nops(bdgs)) ;
    end proc: # R. J. Mathar, Nov 17 2011
  • Mathematica
    Total[Flatten[Position[Rest[Reverse[IntegerDigits[#, 2]]], 1]]] & /@ Range[0, 87] (* Jayanta Basu, Jul 03 2013 *)
  • PARI
    a(n)=sum(i=1,length(binary(n)), component(binary(n),i)*(length(binary(n))-i))
    
  • PARI
    a(n) = my(b=binary(n)); b*-[-#b+1..0]~; \\ Ruud H.G. van Tol, Oct 17 2023
    
  • Python
    def A073642(n):
        a, i = 0, 0
        while n > 0:
            a, n, i = a+(n%2)*i, n//2, i+1
        return a
    print([A073642(n) for n in range(30)]) # A.H.M. Smeets, Aug 17 2019

Formula

a(n) = log_2(A059867(n)).
It seems that for n > 10 a(n) < n/(2*log(n)) and that Sum_{k=1..n} a(k) is asymptotic to C*n*log(n)^2 with 1/2 > C > 0.47.
a(1)=0, a(2n) = a(n) + e1(n), a(2n+1) = a(2n), where e1(n) = A000120(n). - Ralf Stephan, Jun 19 2003
If n = 2^log_2(n) then a(n) = log_2(n); otherwise, a(n) = log_2(n) + a(n-2^log_2(n)), where log_2=A000523. a(2*n+1) = a(2*n), as the least significant bit of n does not contribute to a(n). - Reinhard Zumkeller, Aug 17 2003, edited by A.H.M. Smeets, Aug 17 2019
a(n) = A029931(floor(n/2)). - Franklin T. Adams-Watters, Oct 22 2011
a(n) = Sum_{k=0..A070939(n)-1} k*A030308(n,k). - Reinhard Zumkeller, Jun 01 2013
Conjecture: a(n) = (3*A011371(n) - Sum_{k=1..n} A007814(k)^2)/2 for n > 0. - Velin Yanev, Sep 09 2017
G.f.: (1/(1 - x)) * Sum_{k>=1} k*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Aug 17 2019
From A.H.M. Smeets, Aug 17 2019: (Start)
floor(log_2(n)) <= a(n) <= floor(log_2(n+2)*(log_2(n+2)-1)/2), n > 0.
Lower bound: floor(log_2(n)) = a(n) for n = 2^m or n = 2^m+1, m >= 0.
Upper bound: a(n) = floor(log_2(n+2)*(log_2(n+2)-1)/2) for n = 2^m-2 or n = 2^m-1, m >= 0. (End)
From Aayush Soni, Feb 12 2022: (Start)
For k < 2^n, a((2^n)+k) + a((2^n)-k-1) = n*(n+1)/2.
Proof: Any (n+1)-bit number 111...11_2 can only be split into two numbers 2^n + k and 2^n - k - 1 which never share any bits in common. Since a(111...11_2) = 0+1+2+...+n, this implies the stated formula. (End)

Extensions

a(0)=0 and offset corrected by Philippe Deléham, Apr 20 2009

A219651 a(n) = n minus (sum of digits in factorial base expansion of n).

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 5, 5, 6, 6, 7, 7, 10, 10, 11, 11, 12, 12, 15, 15, 16, 16, 17, 17, 23, 23, 24, 24, 25, 25, 28, 28, 29, 29, 30, 30, 33, 33, 34, 34, 35, 35, 38, 38, 39, 39, 40, 40, 46, 46, 47, 47, 48, 48, 51, 51, 52, 52, 53, 53, 56, 56, 57, 57, 58, 58, 61, 61
Offset: 0

Views

Author

Antti Karttunen, Nov 25 2012

Keywords

Comments

See A007623 for the factorial base number system representation.

Crossrefs

Bisection: A219650. Analogous sequence for binary system: A011371, for Zeckendorf expansion: A219641.

Programs

  • Mathematica
    (* First run program for A007623 to define factBaseIntDs *) Table[n - Plus@@factBaseIntDs[n], {n, 0, 99}] (* Alonso del Arte, Nov 25 2012 *)
  • Python
    from itertools import count
    def A219651(n):
        c, f = 0, 1
        for i in count(2):
            f *= i
            if f>n:
                break
            c += (i-1)*(n//f)
        return c # Chai Wah Wu, Oct 11 2024
  • Scheme
    (define (A219651 n) (- n (A034968 n)))
    

Formula

a(n) = n - A034968(n).

A255131 n minus the least number of squares that add up to n: a(n) = n - A002828(n).

Original entry on oeis.org

0, 0, 0, 0, 3, 3, 3, 3, 6, 8, 8, 8, 9, 11, 11, 11, 15, 15, 16, 16, 18, 18, 19, 19, 21, 24, 24, 24, 24, 27, 27, 27, 30, 30, 32, 32, 35, 35, 35, 35, 38, 39, 39, 40, 41, 43, 43, 43, 45, 48, 48, 48, 50, 51, 51, 51, 53, 54, 56, 56, 56, 59, 59, 59, 63, 63, 63, 64, 66, 66, 67, 67, 70, 71, 72, 72, 73, 74, 75, 75, 78, 80, 80, 80, 81
Offset: 0

Views

Author

Antti Karttunen, Feb 24 2015

Keywords

Comments

The associated beanstalk-sequence starts from a(0) as: 0, 3, 6, 8, 11, 15, 16, 18, 21, ... (A276573).

Examples

			a(0) = 0, because no squares are needed for an empty sum, and 0 - 0 = 0.
a(3) = 0, because 3 cannot be represented as a sum of less than three squares (1+1+1), and 3 - 3 = 0.
a(4) = 3, because 4 can be represented as a sum of just one square (namely 4 itself), and 4 - 1 = 3.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local F, x;
       if issqr(n) then return n-1 fi;
       if nops(select(t -> t[1] mod 4 = 3 and t[2]::odd, ifactors(n)[2])) = 0 then return n-2 fi;
       x:= n/4^floor(padic:-ordp(n, 2)/2);
       if x mod 8 = 7 then n-4 else n-3 fi
    end proc:
    f(0):= 0:
    map(f, [$0..100]); # Robert Israel, Mar 27 2018
  • Mathematica
    {0}~Join~Table[n - (If[First@ # > 0, 1, Length[First@ Split@ #] + 1] &@ SquaresR[Range@ 4, n]), {n, 84}] (* Michael De Vlieger, Sep 08 2016, after Harvey P. Dale at A002828 *)

Formula

a(n) = n - A002828(n).
a(n) = A260740(n) + A062535(n).

A299150 Denominators of the positive solution to n = Sum_{d|n} a(d) * a(n/d).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 2, 2, 8, 2, 2, 4, 2, 2, 4, 8, 2, 8, 2, 4, 4, 2, 2, 4, 8, 2, 16, 4, 2, 4, 2, 8, 4, 2, 4, 16, 2, 2, 4, 4, 2, 4, 2, 4, 16, 2, 2, 16, 8, 8, 4, 4, 2, 16, 4, 4, 4, 2, 2, 8, 2, 2, 16, 16, 4, 4, 2, 4, 4, 4, 2, 16, 2, 2, 16, 4, 4, 4, 2, 16, 128, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Feb 03 2018

Keywords

Examples

			Sequence begins: 1, 1, 3/2, 3/2, 5/2, 3/2, 7/2, 5/2, 27/8, 5/2, 11/2, 9/4, 13/2, 7/2.
		

Crossrefs

Programs

  • Mathematica
    nn=50;
    sys=Table[n==Sum[a[d]*a[n/d],{d,Divisors[n]}],{n,nn}];
    Denominator[Array[a,nn]/.Solve[sys,Array[a,nn]][[2]]]
    f[p_, e_] := 2^((1 + Mod[p, 2])*e - DigitCount[e, 2, 1]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Apr 28 2023 *)
  • PARI
    a(n)={my(v=factor(n)[,2]); denominator(n*prod(i=1, #v, my(e=v[i]); binomial(2*e, e)/4^e))} \\ Andrew Howroyd, Aug 09 2018
    
  • PARI
    A299150(n) = { my(f = factor(n), m=1); for(i=1, #f~, m *= 2^(((1+(f[i,1]%2))*f[i,2]) - hammingweight(f[i,2]))); (m); }; \\ Antti Karttunen, Sep 03 2018
    
  • PARI
    for(n=1, 100, print1(denominator(direuler(p=2, n, 1/(1-p*X)^(1/2))[n]), ", ")) \\ Vaclav Kotesovec, May 08 2025

Formula

a(n) = denominator(n*A317848(n)/A165825(n)) = A165825(n)/(A037445(n) * A006519(n)). - Andrew Howroyd, Aug 09 2018
a(n) = A046644(n)/A006519(n). - Andrew Howroyd and Antti Karttunen, Aug 30 2018
From Antti Karttunen, Sep 03 2018: (Start)
a(n) = 2^A318440(n).
Multiplicative with a(2^e) = 2^A011371(e), a(p^e) = 2^A005187(e) for odd primes p.
Multiplicative with a(p^e) = 2^(((1+A000035(p))*e)-A000120(e)) for all primes p.
(End)

Extensions

Keyword:mult added by Andrew Howroyd, Aug 09 2018

A236840 n minus number of runs in the binary expansion of n: a(n) = n - A005811(n).

Original entry on oeis.org

0, 0, 0, 2, 2, 2, 4, 6, 6, 6, 6, 8, 10, 10, 12, 14, 14, 14, 14, 16, 16, 16, 18, 20, 22, 22, 22, 24, 26, 26, 28, 30, 30, 30, 30, 32, 32, 32, 34, 36, 36, 36, 36, 38, 40, 40, 42, 44, 46, 46, 46, 48, 48, 48, 50, 52, 54, 54, 54, 56, 58, 58, 60, 62, 62, 62, 62, 64, 64, 64
Offset: 0

Views

Author

Antti Karttunen, Apr 18 2014

Keywords

Comments

All terms are even. Used by the "number-of-runs beanstalk" sequence A255056 and many of its associated sequences.

Crossrefs

Cf. A091067 (the positions of records), A106836 (run lengths).
Cf. A255070 (terms divided by 2).

Programs

  • Maple
    A236840 := proc(n) local i, b; if n=0 then 0 else b := convert(n, base, 2); select(i -> (b[i-1]<>b[i]), [$2..nops(b)]); n-1-nops(%) fi end: seq(A236840(i), i=0..69); # Peter Luschny, Apr 19 2014
  • Mathematica
    a[n_] := n - Length@ Split[IntegerDigits[n, 2]]; a[0] = 0; Array[a, 100, 0] (* Amiram Eldar, Jul 16 2023 *)
  • Scheme
    (define (A236840 n)  (- n (A005811 n)))

Formula

a(n) = n - A005811(n) = n - A000120(A003188(n)).
a(n) = 2*A255070(n).

A325508 Product of primes indexed by the prime exponents of n!.

Original entry on oeis.org

1, 1, 2, 4, 10, 20, 42, 84, 204, 476, 798, 1596, 3828, 7656, 12276, 24180, 36660, 73320, 120840, 241680, 389424, 785680, 1294440, 2588880, 3848880, 7147920, 11264760, 15926040, 26057304, 52114608, 74421648, 148843296, 187159392, 340949280, 527531760, 926505360
Offset: 0

Views

Author

Gus Wiseman, May 08 2019

Keywords

Comments

The prime indices of a(n) are the signature of n!, which is row n of A115627.

Examples

			We have 7! = 2^4 * 3^2 * 5^1 * 7^1, so a(7) = prime(4)*prime(2)*prime(1)*prime(1) = 84.
The sequence of terms together with their prime indices begins:
          1: {}
          1: {}
          2: {1}
          4: {1,1}
         10: {1,3}
         20: {1,1,3}
         42: {1,2,4}
         84: {1,1,2,4}
        204: {1,1,2,7}
        476: {1,1,4,7}
        798: {1,2,4,8}
       1596: {1,1,2,4,8}
       3828: {1,1,2,5,10}
       7656: {1,1,1,2,5,10}
      12276: {1,1,2,2,5,11}
      24180: {1,1,2,3,6,11}
      36660: {1,1,2,3,6,15}
      73320: {1,1,1,2,3,6,15}
     120840: {1,1,1,2,3,8,16}
     241680: {1,1,1,1,2,3,8,16}
		

Crossrefs

Programs

  • Mathematica
    Table[Times@@Prime/@Last/@If[(n!)==1,{},FactorInteger[n!]],{n,0,30}]

Formula

a(n) = A181819(n!).
A001221(a(n)) = A071626(n).
A001222(a(n)) = A000720(n).
A056239(a(n)) = A022559(n).
A003963(a(n)) = A135291(n).
A061395(a(n)) = A011371(n).
A007814(a(n)) = A056171(n).
a(n) = A122111(A307035(n)). - Antti Karttunen, Nov 19 2019

A076934 Smallest integer of the form n/k!.

Original entry on oeis.org

1, 1, 3, 2, 5, 1, 7, 4, 9, 5, 11, 2, 13, 7, 15, 8, 17, 3, 19, 10, 21, 11, 23, 1, 25, 13, 27, 14, 29, 5, 31, 16, 33, 17, 35, 6, 37, 19, 39, 20, 41, 7, 43, 22, 45, 23, 47, 2, 49, 25, 51, 26, 53, 9, 55, 28, 57, 29, 59, 10, 61, 31, 63, 32, 65, 11, 67, 34, 69, 35, 71
Offset: 1

Views

Author

Amarnath Murthy, Oct 19 2002

Keywords

Comments

Equivalently, n divided by the largest factorial divisor of n.
Also, the smallest r such that n/r is a factorial number.
Positions of 1's are the factorial numbers A000142. Is every positive integer in this sequence? - Gus Wiseman, May 15 2019
Let m = A055874(n), the largest integer such that 1,2,...,m divides n. Then a(n*m!) = n since m+1 does not divide n, showing that every integer is part of the sequence. - Etienne Dupuis, Sep 19 2020

Crossrefs

Programs

  • Mathematica
    Table[n/Max@@Intersection[Divisors[n],Array[Factorial,n]],{n,100}] (* Gus Wiseman, May 15 2019 *)
    a[n_] := Module[{k=1}, While[Divisible[n, k!], k++]; n/(k-1)!]; Array[a, 100] (* Amiram Eldar, Dec 25 2023 *)
  • PARI
    first(n) = {my(res = [1..n]); for(i = 2, oo, k = i!; if(k <= n, for(j = 1, n\k, res[j*k] = j ) , return(res) ) ) } \\ David A. Corneth, Sep 19 2020

Formula

From Amiram Eldar, Dec 25 2023: (Start)
a(n) = n/A055881(n)!.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = BesselI(2, 2) = 0.688948... (A229020). (End)

Extensions

More terms from David A. Corneth, Sep 19 2020

A090622 Square array read by antidiagonals of highest power of k dividing n! (with n,k>1).

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 0, 1, 3, 0, 0, 1, 1, 4, 0, 1, 0, 1, 2, 4, 0, 0, 1, 1, 2, 2, 7, 0, 0, 0, 1, 1, 2, 2, 7, 0, 0, 1, 0, 2, 1, 3, 4, 8, 0, 0, 0, 1, 0, 2, 1, 3, 4, 8, 0, 0, 0, 0, 1, 1, 2, 1, 4, 4, 10, 0, 0, 0, 1, 1, 1, 1, 4, 2, 4, 5, 10, 0, 0, 1, 0, 1, 1, 2, 1, 4, 2, 5, 5, 11, 0, 0, 0, 1, 0, 1, 1, 2, 1, 4, 2, 5, 5, 11
Offset: 2

Views

Author

Henry Bottomley, Dec 06 2003

Keywords

Examples

			Square array starts:
1, 0, 0, 0, 0, 0, 0, ...
1, 1, 0, 0, 1, 0, 0, ...
3, 1, 1, 0, 1, 0, 1, ...
3, 1, 1, 1, 1, 0, 1, ...
4, 2, 2, 1, 2, 0, 1, ...
4, 2, 2, 1, 2, 1, 1, ...
7, 2, 3, 1, 2, 1, 2, ...
		

Crossrefs

Programs

  • Maple
    f:= proc(n, p) local c, k; c, k:= 0, p;
           while n>=k do c:= c+iquo(n, k); k:= k*p od; c
        end:
    T:= (n, k)-> min(seq(iquo(f(n, i[1]), i[2]), i=ifactors(k)[2])):
    seq(seq(T(n, 2+d-n), n=2..d), d=2..20);  # Alois P. Heinz, Oct 04 2012
  • Mathematica
    f[n_, p_] := Module[{c = 0, k = p}, While[n >= k , c = c + Quotient[n, k]; k = k*p ]; c ]; t[n_, k_] := Min[ Table[ Quotient[f[n, i[[1]]], i[[2]]], {i, FactorInteger[k]}]]; Table[ Table[t[n, 2 + d - n], {n, 2, d}], {d, 2, 20}] // Flatten (* Jean-François Alcover, Oct 03 2013, translated from Alois P. Heinz's Maple program *)

Formula

For k=p prime: T(n,p) = [n/p] + [n/p^2] + [n/p^3] + .... For k = p^m a prime power: T(n,p^m) = [T(n,p)/m]. For k = b*c with b and c coprime: T(n,a*b) = min(T(n,a), T(n,b)). T(n,k) is close to, but below, n/A090624(k).

A136695 Final nonzero digit of n! in base 8.

Original entry on oeis.org

1, 1, 2, 6, 3, 7, 2, 6, 6, 6, 4, 4, 6, 6, 4, 4, 3, 3, 6, 2, 5, 1, 6, 2, 6, 6, 4, 4, 6, 6, 4, 4, 6, 6, 4, 4, 2, 2, 4, 4, 4, 4, 1, 3, 4, 4, 3, 5, 6, 6, 4, 4, 2, 2, 4, 4, 4, 4, 3, 1, 4, 4, 5, 3, 3, 3, 6, 2, 1, 5, 6, 2, 2, 2, 4, 4, 2, 2, 4, 4, 5, 5, 2, 6, 3, 7, 2, 6, 2, 2, 4, 4, 2, 2, 4, 4, 6, 6, 4, 4
Offset: 0

Views

Author

Carl R. White, Jan 16 2008

Keywords

Examples

			6! = 720 decimal = 1320 octal, so a(6) = 2.
		

Crossrefs

Programs

  • Maple
    P:= 1: E:= 0: a[0]:= 1:
    for n from 1 to 100 do
      v:= padic:-ordp(n,2);
      P:= P*(n/2^v) mod 8;
      E:= E + v;
      if E mod 3 = 0 then a[n]:= P
      elif E mod 3 = 1 then a[n]:= 2*(P mod 4)
      else a[n]:= 4
      fi
    od:
    seq(a[n],n=0..100); # Robert Israel, Sep 26 2018
  • Mathematica
    Table[IntegerDigits[FromDigits[Reverse[IntegerDigits[n!,8]]]][[1]],{n,0,100}] (* Harvey P. Dale, Nov 29 2024 *)

Formula

From Robert Israel, Sep 26 2018: (Start)
If A011371(n) == 0 (mod 3) then a(n) = A049606(n) mod 8.
If A011371(n) == 1 (mod 3) then a(n) = 2*(A049606(n) mod 4).
If A011371(n) == 2 (mod 3) then a(n) = 4. (End)

A218787 a(n) = A014486-index for the n-th tendril of infinite beanstalk (A213730(n)), with the "lesser numbers to the left side" construction.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 2, 0, 8, 0, 0, 1, 0, 0, 1, 2, 0, 8, 0, 0, 1, 8, 0, 0, 3, 0, 2, 1, 0, 0, 0, 1, 2, 0, 8, 0, 0, 1, 8, 0, 0, 3, 0, 2, 1, 0, 8, 0, 0, 3, 0, 60, 0, 0, 172, 0, 2, 0, 1, 0, 0, 1, 2, 0, 8, 0, 0, 1, 8, 0, 0, 3, 0, 2, 1, 0, 8, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 11 2012

Keywords

Comments

"Tendrils" of the beanstalk are the finite side-trees sprouting from its infinite trunk (see A179016) at the numbers given by A213730.

Examples

			A213730(9)=22, and from that branches 24 and 25 (as both A011371(24)=A011371(25)=22) and while 24 is a leaf (in A055938) the other branch 25 further branches to two leaves (as both A011371(28)=A011371(29)=25).
When we construct a binary tree from this in such a fashion that the lesser numbers go to the left, we obtain:
...........
...28...29.
.....\./...
..24..25...
...\ /.....
....22.....
...........
and the binary tree
........
...\./..
....*...
.\./....
..*.....
........
is located as A014486(2) in the normal encoding order of binary trees, thus a(9)=2.
		

Crossrefs

These are the mirror-images of binary trees given in A218788, i.e. a(n) = A057163(A218788(n)). A218786 gives the sizes of these trees. Cf. A072764, A218609, A218611.
Previous Showing 31-40 of 148 results. Next