cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 66 results. Next

A069091 Jordan function J_6(n).

Original entry on oeis.org

1, 63, 728, 4032, 15624, 45864, 117648, 258048, 530712, 984312, 1771560, 2935296, 4826808, 7411824, 11374272, 16515072, 24137568, 33434856, 47045880, 62995968, 85647744, 111608280, 148035888, 187858944, 244125000, 304088904, 386889048
Offset: 1

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

Comments

Moebius transform of n^6. - Enrique Pérez Herrero, Sep 14 2010
a(n) is divisible by 504 = (2^3)*(3^3)*7 = A006863(3) except for n = 1, 2, 3 and 7. See Lugo. - Peter Bala, Jan 13 2024

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.

Crossrefs

Cf. A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A007434 (J_2), A059376 (J_3), A059377 (J_4), A059378 (J_5), A069092 - A069095 (J_7 through J_10).
Cf. A065959.
Cf. A013665.

Programs

  • Maple
    with(numtheory): seq(add(d^6 * mobius(n/d), d in divisors(n)), n = 1..100); # Peter Bala, Jan 13 2024
  • Mathematica
    JordanTotient[n_,k_:1]:=DivisorSum[n,#^k*MoebiusMu[n/# ]&]/;(n>0)&&IntegerQ[n]
    A069091[n_IntegerQ]:=JordanTotient[n,6]; (* Enrique Pérez Herrero, Sep 14 2010 *)
    f[p_, e_] := p^(6*e) - p^(6*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    for(n=1,100,print1(sumdiv(n,d,d^6*moebius(n/d)),","))

Formula

a(n) = Sum_{d|n} d^6*mu(n/d).
Multiplicative with a(p^e) = p^(6e)-p^(6(e-1)).
Dirichlet generating function: zeta(s-6)/zeta(s). - Ralf Stephan, Jul 04 2013
a(n) = n^6*Product_{distinct primes p dividing n} (1-1/p^6). - Tom Edgar, Jan 09 2015
Sum_{k=1..n} a(k) ~ n^7 / (7*zeta(7)). - Vaclav Kotesovec, Feb 07 2019
From Amiram Eldar, Oct 12 2020: (Start)
Limit_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^6 = 1/zeta(7).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^6/(p^6-1)^2) = 1.0175973008... (End)
O.g.f.: Sum_{n >= 1} mu(n)*A(x^n)/(1 - x^n)^7 = x + 63*x^2 + 728*x^3 + 4032*x^4 + 15624*x^5 + ..., where A(x) = x + 57*x^2 + 302*x^3 + 302*x^4 + 57*x^5 + x^6 is the 6th Eulerian polynomial. See A008292. - Peter Bala, Jan 31 2022

A053166 Smallest positive integer for which n divides a(n)^4.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 4, 33, 34, 35, 6, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, 51, 26, 53, 6, 55, 14, 57, 58, 59, 30, 61, 62, 21, 4, 65, 66, 67, 34, 69, 70, 71, 6, 73, 74, 15, 38
Offset: 1

Views

Author

Henry Bottomley, Feb 29 2000

Keywords

Comments

According to Broughan (2002, 2003, 2006), a(n) is the "upper 4th root of n". The "lower 4th root of n" is sequence A053164. - Petros Hadjicostas, Sep 15 2019

Crossrefs

Cf. A000188 (inner square root), A019554 (outer square root), A053150 (inner 3rd root), A019555 (outer 3rd root), A053164 (inner 4th root), A015052 (outer 5th root), A015053 (outer 6th root).

Programs

  • Mathematica
    f[p_, e_] := p^Ceiling[e/4]; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 08 2020 *)
  • PARI
    a(n) = my(f=factor(n)); for (i=1, #f~, f[i,2] = ceil(f[i,2]/4)); factorback(f); \\ Michel Marcus, Jun 09 2014

Formula

a(n) = n/A000190(n) = A019554(n)/(A008835(A019554(n)^2))^(1/4).
If n is 5th-power-free (i.e., not 32, 64, 128, 243, ...) then a(n) = A007947(n).
Multiplicative with a(p^e) = p^(ceiling(e/4)). - Christian G. Bower, May 16 2005
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(7)/2) * Product_{p prime} (1 - 1/p^2 + 1/p^3 - 1/p^4 + 1/p^5 - 1/p^6) = 0.3528057925... . - Amiram Eldar, Oct 27 2022

A009641 a(n) = Product_{i=0..6} floor((n+i)/7).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 8, 16, 32, 64, 128, 192, 288, 432, 648, 972, 1458, 2187, 2916, 3888, 5184, 6912, 9216, 12288, 16384, 20480, 25600, 32000, 40000, 50000, 62500, 78125, 93750, 112500, 135000, 162000, 194400, 233280, 279936, 326592, 381024
Offset: 0

Views

Author

Keywords

Comments

For n >= 7, a(n) is the maximal product of seven positive integers with sum n. - Wesley Ivan Hurt, Jun 29 2022

Crossrefs

Maximal product of k positive integers with sum n, for k = 2..10: A002620 (k=2), A006501 (k=3), A008233 (k=4), A008382 (k=5), A008881 (k=6), this sequence (k=7), A009694 (k=8), A009714 (k=9), A354600 (k=10).

Programs

Formula

a(n) = 2*a(n-1) - a(n-2) + 6*a(n-7) - 12*a(n-8) + 6*a(n-9) - 15*a(n-14) + 30*a(n-15) - 15*a(n-16) + 20*a(n-21) - 40*a(n-22) + 20*a(n-23) - 15*a(n-28) + 30*a(n-29) - 15*a(n-30) + 6*a(n-35) - 12*a(n-36) + 6*a(n-37) - a(n-42) + 2*a(n-43) - a(n-44). - Wesley Ivan Hurt, Jun 29 2022
a(7*n) = n^7 (A001015). - Bernard Schott, Nov 04 2022
Sum_{n>=7} 1/a(n) = 1 + zeta(7). - Amiram Eldar, Jan 10 2023

Extensions

a(40)-a(44) from Georg Fischer, Nov 07 2019

A084220 a(n) = sigma_6(n^2)/sigma_3(n^2).

Original entry on oeis.org

1, 57, 703, 3641, 15501, 40071, 117307, 233017, 512461, 883557, 1770231, 2559623, 4824613, 6686499, 10897203, 14913081, 24132657, 29210277, 47039023, 56439141, 82466821, 100903167, 148023723, 163810951, 242203001, 275002941, 373584043
Offset: 1

Views

Author

Benoit Cloitre, Jun 21 2003

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory): a:=n->sigma[6](n^2)/sigma[3](n^2): seq(a(n),n=1..30); # Muniru A Asiru, Oct 09 2018
  • Mathematica
    Table[DivisorSigma[6,n^2]/DivisorSigma[3,n^2],{n,30}] (* Harvey P. Dale, May 02 2012 *)
    f[p_, e_] := (p^(6*e + 3) + 1)/(p^3 + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Sep 13 2020 *)
  • PARI
    a(n)=sumdiv(n^2,d,d^6)/sumdiv(n^2,d,d^3)
    
  • PARI
    a(n) = sigma(n^2, 6)/sigma(n^2, 3); \\ Michel Marcus, Oct 09 2018

Formula

Multiplicative with a(p^e) = (p^(6*e + 3) + 1)/(p^3 + 1). - Amiram Eldar, Sep 13 2020
Sum_{k>=1} 1/a(k) = 1.019347996519986873084210965032965644185467985307512751244884310846924559959... - Vaclav Kotesovec, Sep 24 2020
Sum_{k=1..n} a(k) ~ c * n^7, where c = 90*zeta(7)/(7*Pi^4) = 0.133093... . - Amiram Eldar, Oct 30 2022
From Seiichi Manyama, May 18 2024: (Start)
a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} ( n/gcd(x_1, x_2, x_3, n) )^3.
a(n) = Sum_{d|n} mu(n/d) * (n/d)^3 * sigma_6(d). (End)

A321810 Sum of 6th powers of odd divisors of n.

Original entry on oeis.org

1, 1, 730, 1, 15626, 730, 117650, 1, 532171, 15626, 1771562, 730, 4826810, 117650, 11406980, 1, 24137570, 532171, 47045882, 15626, 85884500, 1771562, 148035890, 730, 244156251, 4826810, 387952660, 117650, 594823322, 11406980, 887503682
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2018

Keywords

Crossrefs

Column k=6 of A285425.
Cf. A050999, A051000, A051001, A051002, A321811 - A321816 (analog for 2nd .. 12th powers).
Cf. A321543 - A321565, A321807 - A321836 for related sequences.

Programs

  • Mathematica
    f[2, e_] := 1; f[p_, e_] := (p^(6*e + 6) - 1)/(p^6 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 02 2022 *)
  • PARI
    apply( A321810(n)=sigma(n>>valuation(n,2),6), [1..30]) \\ M. F. Hasler, Nov 26 2018
    
  • Python
    from sympy import divisor_sigma
    def A321810(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(),6)) # Chai Wah Wu, Jul 16 2022

Formula

a(n) = A013954(A000265(n)) = sigma_6(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^6*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 22 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(6*e+6)-1)/(p^6-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^7, where c = zeta(7)/14 = 0.0720249... . (End)
a(n) + a(n/2)*2^6 = A013954(n) where a(.)=0 for non-integer arguments. - R. J. Mathar, Aug 15 2023

A351269 Sum of the 6th powers of the squarefree divisors of n.

Original entry on oeis.org

1, 65, 730, 65, 15626, 47450, 117650, 65, 730, 1015690, 1771562, 47450, 4826810, 7647250, 11406980, 65, 24137570, 47450, 47045882, 1015690, 85884500, 115151530, 148035890, 47450, 15626, 313742650, 730, 7647250, 594823322, 741453700, 887503682, 65, 1293240260
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 05 2022

Keywords

Comments

Inverse Möbius transform of n^6 * mu(n)^2. - Wesley Ivan Hurt, Jun 08 2023

Examples

			a(4) = 65; a(4) = Sum_{d|4} d^6 * mu(d)^2 = 1^6*1 + 2^6*1 + 4^6*0 = 65.
		

Crossrefs

Cf. A008683 (mu), A013661, A013665.
Sum of the k-th powers of the squarefree divisors of n for k=0..10: A034444 (k=0), A048250 (k=1), A351265 (k=2), A351266 (k=3), A351267 (k=4), A351268 (k=5), this sequence (k=6), A351270 (k=7), A351271 (k=8), A351272 (k=9), A351273 (k=10).

Programs

  • Mathematica
    a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^6); Array[a, 100] (* Amiram Eldar, Feb 06 2022 *)

Formula

a(n) = Sum_{d|n} d^6 * mu(d)^2.
Multiplicative with a(p^e) = 1 + p^6. - Amiram Eldar, Feb 06 2022
G.f.: Sum_{k>=1} mu(k)^2 * k^6 * x^k / (1 - x^k). - Ilya Gutkovskiy, Feb 06 2022
Sum_{k=1..n} a(k) ~ c * n^7, where c = zeta(7)/(7*zeta(2)) = 0.0875718... . - Amiram Eldar, Nov 10 2022

A351603 a(n) = n^5 * Sum_{d^2|n} 1 / d^5.

Original entry on oeis.org

1, 32, 243, 1056, 3125, 7776, 16807, 33792, 59292, 100000, 161051, 256608, 371293, 537824, 759375, 1082368, 1419857, 1897344, 2476099, 3300000, 4084101, 5153632, 6436343, 8211456, 9768750, 11881376, 14407956, 17748192, 20511149, 24300000, 28629151, 34635776, 39135393
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 14 2022

Keywords

Crossrefs

Sequences of the form n^k * Sum_{d^2|n} 1/d^k for k = 0..10: A046951 (k=0), A340774 (k=1), A351600 (k=2), A351601 (k=3), A351602 (k=4), this sequence (k=5), A351604 (k=6), A351605 (k=7), A351606 (k=8), A351607 (k=9), A351608 (k=10).
Cf. A013665.

Programs

  • Mathematica
    f[p_, e_] := p^5*(p^(5*e) - p^(5*Floor[(e - 1)/2]))/(p^5 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 13 2022 *)
  • PARI
    a(n) = n^5*sumdiv(n, d, if (issquare(d), 1/sqrtint(d^5))); \\ Michel Marcus, Feb 15 2022

Formula

Multiplicative with a(p^e) = p^5*(p^(5*e) - p^(5*floor((e-1)/2)))/(p^5 - 1). - Sebastian Karlsson, Feb 25 2022
Sum_{k=1..n} a(k) ~ c * n^6, where c = zeta(7)/6 = 0.168058... . - Amiram Eldar, Nov 13 2022

A352034 Sum of the 6th powers of the odd proper divisors of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 730, 1, 1, 730, 15626, 1, 730, 1, 117650, 16355, 1, 1, 532171, 1, 15626, 118379, 1771562, 1, 730, 15626, 4826810, 532171, 117650, 1, 11406980, 1, 1, 1772291, 24137570, 133275, 532171, 1, 47045882, 4827539, 15626, 1, 85884500, 1, 1771562, 11938421, 148035890
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 01 2022

Keywords

Examples

			a(10) = 15626; a(10) = Sum_{d|10, d<10, d odd} d^6 = 1^6 + 5^6 = 15626.
		

Crossrefs

Sum of the k-th powers of the odd proper divisors of n for k=0..10: A091954 (k=0), A091570 (k=1), A351647 (k=2), A352031 (k=3), A352032 (k=4), A352033 (k=5), this sequence (k=6), A352035 (k=7), A352036 (k=8), A352037 (k=9), A352038 (k=10).

Programs

  • Mathematica
    f[2, e_] := 1; f[p_, e_] := (p^(6*e+6) - 1)/(p^6 - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n^6, 0]; Array[a, 60] (* Amiram Eldar, Oct 11 2023 *)
    Table[Total[Select[Most[Divisors[n]],OddQ]^6],{n,50}] (* Harvey P. Dale, Sep 15 2024 *)

Formula

a(n) = Sum_{d|n, d
G.f.: Sum_{k>=1} (2*k-1)^6 * x^(4*k-2) / (1 - x^(2*k-1)). - Ilya Gutkovskiy, Mar 02 2022
For odd n >1, a(n) = A321810(n)-n^6; for even n, a(n) = A321810(n). - R. J. Mathar, Aug 15 2023
Sum_{k=1..n} a(k) ~ c * n^7, where c = (zeta(7)-1)/14 = 0.0005963769... . - Amiram Eldar, Oct 11 2023

A352052 Sum of the 6th powers of the divisor complements of the odd proper divisors of n.

Original entry on oeis.org

0, 64, 729, 4096, 15625, 46720, 117649, 262144, 532170, 1000064, 1771561, 2990080, 4826809, 7529600, 11406979, 16777216, 24137569, 34058944, 47045881, 64004096, 85884499, 113379968, 148035889, 191365120, 244156250, 308915840, 387952659, 481894400, 594823321
Offset: 1

Author

Wesley Ivan Hurt, Mar 01 2022

Keywords

Examples

			a(10) = 10^6 * Sum_{d|10, d<10, d odd} 1 / d^6 = 10^6 * (1/1^6 + 1/5^6) = 1000064.
		

Crossrefs

Sum of the k-th powers of the divisor complements of the odd proper divisors of n for k=0..10: A091954 (k=0), A352047 (k=1), A352048 (k=2), A352049 (k=3), A352050 (k=4), A352051 (k=5), this sequence (k=6), A352053 (k=7), A352054 (k=8), A352055 (k=9), A352056 (k=10).

Programs

  • Maple
    f:= proc(n) local m,d;
          m:= n/2^padic:-ordp(n,2);
          add((n/d)^6, d = select(`<`,numtheory:-divisors(m),n))
    end proc:
    map(f, [$1..30]); # Robert Israel, Apr 03 2023
  • Mathematica
    Table[n^6*DivisorSum[n, 1/#^6 &, And[# < n, OddQ[#]] &], {n, 29}] (* Michael De Vlieger, Apr 04 2023 *)
    a[n_] := DivisorSigma[-6, n/2^IntegerExponent[n, 2]] * n^6 - Mod[n, 2]; Array[a, 100] (* Amiram Eldar, Oct 13 2023 *)
  • PARI
    a(n) = n^6*sumdiv(n, d, if ((dMichel Marcus, Apr 04 2023
    
  • PARI
    a(n) = n^6 * sigma(n >> valuation(n, 2), -6) - n % 2; \\ Amiram Eldar, Oct 13 2023

Formula

a(n) = n^6 * Sum_{d|n, d
G.f.: Sum_{k>=2} k^6 * x^k / (1 - x^(2*k)). - Ilya Gutkovskiy, May 18 2023
From Amiram Eldar, Oct 13 2023: (Start)
a(n) = A321810(n) * A006519(n)^6 - A000035(n).
Sum_{k=1..n} a(k) = c * n^7 / 7, where c = 127*zeta(7)/128 = 1.000471548... . (End)

A293904 Decimal expansion of zeta(21).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 4, 7, 6, 9, 3, 2, 9, 8, 6, 7, 8, 7, 8, 0, 6, 4, 6, 3, 1, 1, 6, 7, 1, 9, 6, 0, 4, 3, 7, 3, 0, 4, 5, 9, 6, 6, 4, 4, 6, 6, 9, 4, 7, 8, 4, 9, 3, 7, 6, 0, 0, 2, 0, 7, 4, 8, 7, 3, 7, 6, 5, 9, 6, 8, 3, 9, 0, 8, 7, 8, 9, 8, 1, 5, 9, 8, 3, 3, 8, 7, 6, 6
Offset: 1

Author

Frank Ellermann, Oct 19 2017

Keywords

Comments

Web searches find 1.0000004769329867878 in Python tools. Simon Plouffe published 1000 digits for zeta(9) up to zeta(2051) many years ago.

Examples

			1.000000476932986787806...
		

Programs

  • Mathematica
    RealDigits[Zeta[21], 10, 100][[1]] (* Amiram Eldar, May 31 2021 *)
Previous Showing 11-20 of 66 results. Next