cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 47 results. Next

A060238 a(n) = det(M) where M is an n X n matrix with M[i,j] = lcm(i,j).

Original entry on oeis.org

1, 1, -2, 12, -48, 960, 11520, -483840, 3870720, -69672960, -2786918400, 306561024000, 7357464576000, -1147764473856000, -96412215803904000, -11569465896468480000, 185111454343495680000, -50350315581430824960000, -1812611360931509698560000
Offset: 0

Views

Author

MCKAY john (mckay(AT)cs.concordia.ca), Mar 21 2001

Keywords

References

  • J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 695, pp. 90, 297-298, Ellipses, Paris, 2004.
  • J. Sandor and B. Crstici, Handbook of Number Theory II, Springer, 2004, p. 265, eq. 10.

Crossrefs

Programs

Formula

For n >= 2, a(n) = n! * Product_{j=2..n} Product_{p|j} (1-p) (where the second product is over all primes p that divide j) (cf. A023900). - Avi Peretz (njk(AT)netvision.net.il), Mar 22 2001
a(n) = n! * Product_{p<=n} (1-p)^floor(n/p) where the product runs through the primes. - Benoit Cloitre, Jan 31 2008
a(n) = A000142(n) * A085542(n). - Enrique Pérez Herrero, Jun 08 2010
a(n) = A001088(n) * A048803(n) * (-1)^A013939(n). - Amiram Eldar, Dec 19 2018
a(n) = Product_{k=1..n} (-1)^A001221(k) * A000010(k) * A007947(k) [De Koninck & Mercier]. - Bernard Schott, Dec 11 2020

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 25 2023

A112966 Sum(mu(i)*omega(j): i+j=n), with mu=A008683 and omega=A001221.

Original entry on oeis.org

0, 0, 1, 0, -1, -1, -1, -2, -3, -2, -2, -1, -3, -3, -4, 0, -6, -1, -4, -1, -3, -3, -7, 0, -5, -3, -3, 0, -5, 1, -5, -2, -10, -1, -8, 4, -8, -3, -4, 2, -6, 0, -5, -1, -4, -2, -11, 3, -8, -1, -8, -1, -11, 2, -8, 2, -7, -3, -9, 5, -2, -5, -7, 2, -11, 7, -6, 0, -4, 1, -9, 4, -12, -3, -6, 0, -10, 2, -7, -1, -10, -8, -12, 6, -13, -2, -12, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 07 2005

Keywords

Examples

			a(5)=mu(1)*omega(4)+mu(2)*omega(3)+mu(3)*omega(2)+mu(4)*omega(1)
= 1*1 - 1*1 - 1*1 + 0*0 = -1.
		

Crossrefs

Programs

  • Haskell
    a112966 n = sum $ zipWith (*)
       a008683_list $ reverse $ take (n - 1) a001221_list
    -- Reinhard Zumkeller, Feb 29 2012

A112968 a(n) = Sum_{i+j=n} mu(i)*Omega(j), with mu=A008683 and Omega=A001222.

Original entry on oeis.org

0, 0, 1, 0, 0, -2, -2, -2, -2, -2, -6, -2, -4, -2, -7, -1, -5, 0, -7, -3, -9, 1, -11, 2, -7, 1, -12, 1, -11, 7, -8, -5, -8, -1, -18, 3, -10, 1, -13, 1, -7, 13, -12, -2, -13, 6, -16, 3, -11, 3, -15, -4, -16, 13, -15, -4, -15, 4, -17, 11, -14, 4, -13, 7, -12, 15, -17, -5, -15, 16, -13, 3, -12, 3, -20, 3, -27, 19, -20, -3, -11, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 07 2005

Keywords

Examples

			a(5) = mu(1)*Omega(4)+mu(2)*Omega(3)+mu(3)*Omega(2)+mu(4)*Omega(1) = 1*2 - 1*1 - 1*1 + 0*1 = 0.
		

Crossrefs

Programs

  • Haskell
    a112968 n = sum $ zipWith (*)
       a008683_list $ reverse $ take (n - 1) a001222_list
    -- Reinhard Zumkeller, Feb 29 2012
  • Mathematica
    A112968[n_]:=Plus@@Table[MoebiusMu[i]*PrimeOmega[n-i],{i,1,n-1}]; Array[A112968,200] (* Enrique Pérez Herrero, Feb 28 2012 *)

Extensions

Corrected by N. J. A. Sloane, Mar 01 2006

A329354 a(n) = Sum_{d|n} d*omega(d).

Original entry on oeis.org

0, 2, 3, 6, 5, 17, 7, 14, 12, 27, 11, 45, 13, 37, 38, 30, 17, 62, 19, 71, 52, 57, 23, 101, 30, 67, 39, 97, 29, 162, 31, 62, 80, 87, 82, 162, 37, 97, 94, 159, 41, 220, 43, 149, 137, 117, 47, 213, 56, 152, 122, 175, 53, 197, 126, 217, 136, 147, 59, 410, 61, 157, 187, 126, 148, 336, 67, 227, 164, 342, 71, 362, 73, 187, 213, 253, 172, 394, 79
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[d*PrimeNu[d], {d, Divisors[n]}], {n, 1, 100}] (* Vaclav Kotesovec, Aug 18 2021 *)
  • PARI
    A329354(n) = sumdiv(n,d,omega(d)*d);

Formula

a(n) = Sum_{d|n} d*A001221(d).
a(n) = A180253(n) - A323599(n).
a(n) = A328260(n) + A329375(n).
a(n) = Sum_{d|n} (n/d) * sopf(d). - Wesley Ivan Hurt, May 24 2021
Dirichlet g.f.: primezeta(s-1) * zeta(s-1) * zeta(s). - Ilya Gutkovskiy, Aug 18 2021
Conjecture: Sum_{k=1..n} a(k) ~ Pi^2 * n^2 * (log(log(n)) + A077761) / 12. - Vaclav Kotesovec, Mar 03 2023

A355537 Number of ways to choose a sequence of prime factors, one of each integer from 2 to n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 8, 8, 16, 32, 32, 32, 64, 64, 128, 256, 512, 512, 1024, 1024, 2048, 2048, 4096, 4096, 12288, 12288, 12288, 24576, 49152, 98304, 196608, 196608, 393216, 786432, 1572864, 1572864, 4718592, 4718592, 9437184, 18874368, 37748736
Offset: 1

Views

Author

Gus Wiseman, Jul 20 2022

Keywords

Comments

Also partial products of A001221 without the first term 0, sum A013939.
For initial terms up to n = 29 we have a(n) = 2^A355538(n). The first non-power of 2 is a(30) = 12288.

Examples

			The a(n) choices for n = 2, 6, 10, 12, with prime(k) replaced by k:
  (1)  (12131)  (121314121)  (12131412151)
       (12132)  (121314123)  (12131412152)
                (121324121)  (12131412351)
                (121324123)  (12131412352)
                             (12132412151)
                             (12132412152)
                             (12132412351)
                             (12132412352)
		

Crossrefs

The sum of the same integers is A000096.
The product of the same integers is A000142, Heinz number A070826.
The version for divisors instead of prime factors is A066843.
The integers themselves are the rows of A131818.
The version with multiplicity is A327486.
Using prime indices instead of 2..n gives A355741, for multisets A355744.
Counting sequences instead of multisets gives A355746.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    Table[Times@@PrimeNu/@Range[2,m],{m,2,30}]

A060832 a(n) = Sum_{k>0} floor(n/k!).

Original entry on oeis.org

0, 1, 3, 4, 6, 7, 10, 11, 13, 14, 16, 17, 20, 21, 23, 24, 26, 27, 30, 31, 33, 34, 36, 37, 41, 42, 44, 45, 47, 48, 51, 52, 54, 55, 57, 58, 61, 62, 64, 65, 67, 68, 71, 72, 74, 75, 77, 78, 82, 83, 85, 86, 88, 89, 92, 93, 95, 96, 98, 99, 102, 103, 105, 106, 108, 109, 112, 113
Offset: 0

Views

Author

Henry Bottomley, May 01 2001

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [&+[Floor(m/Factorial(k)):k in [1..m]]:m in [1..70]]; // Marius A. Burtea, Jul 11 2019
  • PARI
    a(n)={my(s=0, d=1, f=1); while (n>=d, s+=n\d; f++; d*=f); s} \\ Harry J. Smith, Jul 12 2009
    
  • PARI
    a(n) = round(sumpos(k=1, n\k!)); \\ Michel Marcus, Jan 24 2025
    

Formula

a(n) = a(n-1) + A055881(n).
a(n) = (e-1)*n + f(n) where f(n) < 0. - Benoit Cloitre, Jun 19 2002
f is unbounded in the negative direction. The assertion that f(n) < 0 is correct, since (e-1)*n = Sum_{k>=1} n/k! is term for term >= this sequence. - Franklin T. Adams-Watters, Nov 03 2005
G.f.: (1/(1 - x)) * Sum_{k>=1} x^(k!)/(1 - x^(k!)). - Ilya Gutkovskiy, Jul 11 2019

A338943 a(n) is the least number k such that the average number of distinct prime divisors of {1..k} is >= n.

Original entry on oeis.org

1, 6, 455, 8167302
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 17 2020

Keywords

Comments

10^18 < a(4) < 10^19. - Daniel Suteu, Nov 17 2020

Examples

			a(2) = 455 because the average number of distinct prime divisors of {1..455} is >= 2.
		

Crossrefs

A368611 a(n) = Sum_{k=1..n} pi(k) * floor(n/k).

Original entry on oeis.org

0, 1, 3, 6, 9, 15, 19, 26, 32, 40, 45, 58, 64, 75, 86, 99, 106, 123, 131, 149, 163, 177, 186, 212, 224, 240, 255, 277, 287, 316, 327, 351, 369, 388, 406, 441, 453, 474, 494, 528, 541, 578, 592, 622, 651, 675, 690, 737, 756, 788, 812, 845, 861, 903, 927, 969, 995, 1022
Offset: 1

Views

Author

Wesley Ivan Hurt, Dec 31 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[PrimePi[k] Floor[n/k], {k, n}], {n, 100}]

Formula

a(n) = A013939(n) + A368613(n).

A092494 a(n) = Sum_{p prime and p<=n} ceiling(n/p).

Original entry on oeis.org

0, 1, 3, 4, 6, 7, 10, 11, 12, 13, 16, 17, 20, 21, 23, 25, 27, 28, 31, 32, 34, 36, 39, 40, 42, 43, 45, 46, 49, 50, 54, 55, 56, 58, 60, 62, 65, 66, 68, 70, 73, 74, 78, 79, 81, 83, 86, 87, 89, 90, 92, 94, 97, 98, 100, 102, 104, 106, 109, 110, 114, 115, 117, 119, 120, 122
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 05 2004

Keywords

Comments

a(n) = A013939(n) + A048865(n).

Crossrefs

Cf. A006590.

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    V:= Vector(N):
    p:= 0:
    do
      p:= nextprime(p);
      if p > N then break fi;
      V[p]:= V[p]+1;
      for k from 2 to floor(N/p) do
        V[(k-1)*p+1 .. k*p]:= V[(k-1)*p+1 .. k*p] +~ k;
      od;
      if (k-1)*p+1<=N then V[(k-1)*p+1..N]:= V[(k-1)*p+1..N]+~ k fi
    od:
    convert(V,list); # Robert Israel, Jun 19 2019
  • PARI
    a(n) = sum(k=1, n, isprime(k)*ceil(n/k)); \\ Michel Marcus, Jun 19 2019

A112965 a(n) = Sum_{i+j=n} omega(i)*omega(j), where omega = A001221.

Original entry on oeis.org

0, 0, 0, 1, 2, 3, 4, 7, 8, 9, 10, 14, 14, 17, 18, 23, 24, 27, 26, 32, 32, 35, 36, 44, 42, 47, 48, 52, 50, 58, 54, 65, 62, 67, 66, 78, 70, 79, 78, 88, 84, 94, 88, 100, 100, 103, 100, 118, 106, 119, 114, 124, 116, 135, 122, 138, 134, 141, 136, 155, 142, 155, 154, 163, 156
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 07 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[PrimeNu[i]*PrimeNu[n - i], {i, n - 1}], {n, 65}] (* Ivan Neretin, Jan 21 2017 *)
  • PARI
    a(n) = sum(i=2, n-2, omega(i)*omega(n-i)); \\ Michel Marcus, Jan 22 2017

Formula

G.f.: (Sum_{k>=1} x^prime(k)/(1 - x^prime(k)))^2. - Ilya Gutkovskiy, Jan 31 2017
Previous Showing 11-20 of 47 results. Next