cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 46 results. Next

A383120 a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n*k,k).

Original entry on oeis.org

1, 2, 11, 139, 2885, 82381, 2979565, 130203494, 6664589321, 390857822425, 25832193906761, 1899273577364197, 153741850998047053, 13585520026454056279, 1301210398133681268381, 134270617908678099820891, 14849785991790603714043921, 1752283118795349858851381297
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 17 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k] Binomial[n k, k], {k, 0, n}], {n, 0, 17}]
  • PARI
    a(n) = sum(k=0, n, binomial(n,k) * binomial(n*k,k)); \\ Michel Marcus, Apr 17 2025

Formula

a(n) = [x^n] ((1 + x)^n + x)^n.
a(n) ~ exp(n + exp(-1) - 1/2) * n^n / sqrt(2*Pi*n). - Vaclav Kotesovec, Apr 17 2025

A055789 a(n) = binomial(n, round(sqrt(n))).

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 15, 35, 56, 84, 120, 165, 220, 715, 1001, 1365, 1820, 2380, 3060, 3876, 4845, 20349, 26334, 33649, 42504, 53130, 65780, 80730, 98280, 118755, 142506, 736281, 906192, 1107568, 1344904, 1623160, 1947792, 2324784, 2760681
Offset: 0

Views

Author

Henry Bottomley, Jul 13 2000

Keywords

Examples

			a(9) = C(9,3) = 9!/(3!*6!) = 84
		

Crossrefs

Programs

  • Magma
    [Binomial(n, Round(Sqrt(n))): n in [0..40]]; // G. C. Greubel, Jan 25 2020
    
  • Maple
    seq( binomial(n, round(sqrt(n))), n=0..40); # G. C. Greubel, Jan 25 2020
  • Mathematica
    Table[Binomial[n, Round[Sqrt[n]]], {n,0,40}] (* G. C. Greubel, Jan 25 2020 *)
  • PARI
    vector(40, n, binomial(n, round(sqrt(n))) ) \\ G. C. Greubel, Jan 25 2020
    
  • Python
    from math import comb, isqrt
    def A055789(n): return comb(n,(m:=isqrt(n))+ int((n-m*(m+1)<<2)>=1)) # Chai Wah Wu, Jul 29 2022
  • Sage
    [binomial(n, round(sqrt(n))) for n in (0..40)] # G. C. Greubel, Jan 25 2020
    

Formula

a(n^2) = A014062(n).

A066789 a(n) = binomial(n^3, n^2).

Original entry on oeis.org

1, 70, 4686825, 488526937079580, 130054841538480192455912505, 134084922435426494254000700271928170048684, 759782631286509488749614088922952734321921774350851547360350
Offset: 1

Views

Author

Benoit Cloitre, Jan 18 2002

Keywords

Crossrefs

Cf. A014062 = C(n^2, n).

Programs

  • Mathematica
    Table[Binomial[n^3, n^2], {n, 8}] (* Zak Seidov, May 26 2005 *)
  • PARI
    a(n) = { binomial(n^3, n^2) } \\ Harry J. Smith, Mar 26 2010

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 27 2007

A107447 a(n) = binomial(n!, n^2).

Original entry on oeis.org

1, 0, 0, 735471, 41749257038001257014137504, 8072776113194557737391130747136885454937928869204466648295480, 34145180671088019813488798475366394184193477615213303683031012996650190080826664983024305988320017979711374101114480000
Offset: 1

Views

Author

Zak Seidov, May 26 2005

Keywords

Crossrefs

Cf. A014062 C(n^2, n), A086687 C(n!, n), A067454.

Programs

  • Magma
    [Binomial(Factorial(n), n^2): n in [1..9]]; // G. C. Greubel, Mar 24 2024
    
  • Mathematica
    a[n_]:= Binomial[n!, n^2]; Array[a, 10]
  • SageMath
    [binomial(factorial(n), n^2) for n in range(1,10)] # G. C. Greubel, Mar 24 2024

Formula

From Vaclav Kotesovec, May 28 2025: (Start)
a(n) ~ n!^(n^2) / (n^2)!.
a(n) ~ (2*Pi)^((n^2 - 1)/2) * n^(n^3 - 3*n^2/2 - 1) / exp(n^3 -n^2 - n/12). (End)

A177424 Exponent of the highest power of 2 dividing binomial(n^2,n).

Original entry on oeis.org

0, 0, 1, 2, 2, 1, 4, 3, 3, 1, 3, 3, 2, 3, 5, 4, 4, 1, 3, 3, 5, 1, 4, 8, 3, 2, 3, 5, 6, 4, 6, 5, 5, 1, 3, 3, 5, 2, 6, 3, 3, 3, 4, 3, 4, 4, 5, 6, 4, 2, 3, 7, 5, 1, 5, 5, 3, 4, 6, 6, 7, 5, 7, 6, 6, 1, 3, 3, 5, 2, 6, 4, 7, 1, 3, 3, 3, 5, 6, 4, 4, 2, 6, 3, 5, 5, 4, 6, 6, 2, 4, 12, 6, 5, 6, 7, 5, 2, 3, 6, 5, 3, 6, 3, 6
Offset: 0

Views

Author

Michel Lagneau, May 07 2010

Keywords

Comments

a(n) is the largest integer such that 2^a(n) divides binomial(n^2,n)=A014062(n).
a(n) is the number of carries when adding n to n^2-n in base 2. - Robert Israel, Oct 23 2019

Examples

			For n = 6, binomial(36,6) = 1947792 = 2^4*3*7*11*17*31, the highest power of 2 is 2^4, and the exponent of 2^4 is a(6)=4.
		

Crossrefs

Programs

  • Maple
    A007814 := proc(n) if type(n,'odd') then 0; else for p in ifactors(n)[2] do if op(1,p) = 2 then return op(2,p); end if; end do: end if; end proc:
    A014062 := proc(n) binomial(n^2,n) ; end proc:
    A177424 := proc(n) A007814(A014062(n)) ; end proc: seq(A177424(n),n=0..80) ;
    # Alternative:
    nc:= proc(a,b,c)
      local t;
      if c=0 and (a=0 or b=0) then return 0 fi;
      t:= (a mod 2) + (b mod 2) + c;
      if t < 2 then  procname(floor(a/2),floor(b/2),0)
      else  1 + procname(floor(a/2),floor(b/2),1)
      fi
    end proc:
    seq(nc(n,n^2-n,0),n=0..100); # Robert Israel, Oct 23 2019
  • Mathematica
    IntegerExponent[Table[Binomial[n^2,n],{n,0,120}],2] (* Harvey P. Dale, Mar 31 2019 *)
  • PARI
    valp(n,p=2)=my(s); while(n\=p, s+=n); s
    a(n)=valp(n^2)-valp(n^2-n)-valp(n) \\ Charles R Greathouse IV, Jul 08 2022
  • Python
    from math import comb
    def A177424(n): return (~(m:=comb(n**2,n))& m-1).bit_length() # Chai Wah Wu, Jul 08 2022
    

Formula

a(n) = A007814(A014062(n)).

Extensions

Maple program replaced by a structured general version - R. J. Mathar, May 10 2010

A178842 a(n) = binomial((n-1)^2, n).

Original entry on oeis.org

0, 0, 4, 126, 4368, 177100, 8347680, 450978066, 27540584512, 1878392407320, 141629804643600, 11703541346076580, 1052134368066259632, 102250849636865496528, 10683770265451303535424, 1194448077521704400002650, 142288257910903254700704000, 17993390003427864738863790640
Offset: 1

Views

Author

Thomas Young, Jun 17 2010

Keywords

Comments

Number of ways to place n objects in an (n-1) X (n-1) array (e.g., the number of ways to arrange stars in a flag's field pattern).

Crossrefs

Cf. A014062 (binomial(n^2, n)).

Programs

  • GAP
    List([1..20], n -> Binomial((n-1)^2, n)); # G. C. Greubel, Jan 21 2019
  • Magma
    [Binomial((n-1)^2,n): n in [1..20]]; // G. C. Greubel, Jan 21 2019
    
  • Mathematica
    a[n_] := Binomial[(n - 1)^2, n]; Array[a, 18] (* Robert G. Wilson v, Jul 25 2010 *)
  • PARI
    vector(20, n, binomial((n-1)^2,n)) \\ G. C. Greubel, Jan 21 2019
    
  • Sage
    [binomial((n-1)^2,n) for n in (1..20)] # G. C. Greubel, Jan 21 2019
    

A184357 a(n) = Sum_{k=0..n} C(n^2-k^2, n-k)*C(k^2, k).

Original entry on oeis.org

1, 2, 15, 226, 5079, 151326, 5611906, 248995090, 12862665297, 758353907422, 50255751919386, 3698524145800452, 299324750430958973, 26424096787968560864, 2527130527406877225450, 260305991718814269022586, 28732428200125730917353569
Offset: 0

Views

Author

Paul D. Hanna, Jan 15 2011

Keywords

Examples

			a(0) = 1 = 1*1;
a(1) = 2 = 1*1 + 1*1;
a(2) = 15 = 6*1 + 3*1 + 1*6;
a(3) = 226 = 84*1 + 28*1 + 5*6 + 1*84;
a(4) = 5079 = 1820*1 + 455*1 + 66*6 + 7*84 + 1*1820;
a(5) = 151326 = 53130*1 + 10626*1 + 1330*6 + 120*84 + 9*1820 + 1*53130; ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n^2-k^2,n-k]Binomial[k^2,k],{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jul 30 2023 *)
  • PARI
    {a(n)=if(n<0, 0, sum(k=0, n, binomial(n^2-k^2, n-k)*binomial(k^2, k)))}

A186245 a(n) = binomial(n^2, 2*n).

Original entry on oeis.org

1, 84, 12870, 3268760, 1251677700, 675248872536, 488526937079580, 456703981505085600, 535983370403809682970, 771629762387959506903300, 1337261858854117218288723600, 2746379593275133584459064976784, 6596095888094645606758451183394760
Offset: 2

Views

Author

Alex Ratushnyak, Aug 18 2012

Keywords

Crossrefs

Cf. A014062.

Programs

  • Mathematica
    Array[Binomial[#^2, 2 #] &, 13, 2] (* Michael De Vlieger, May 21 2021 *)
  • Python
    import math
    for n in range(2,22):
        x = n*n
        y = n+n
        print(math.factorial(x) / (math.factorial(x-y) * math.factorial(y)), end=',')

A187083 a(n) = binomial(n^n, n).

Original entry on oeis.org

1, 6, 2925, 174792640, 2475588476563125, 14320984850603177651837856, 50975600425441237253196072020826978589, 155681826868802708662507744652859497547627180714885120, 541851389452483826218851027234763464912884507272826833630475746754951097
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(n^n, n): n in [1..15]]; // Vincenzo Librandi, Apr 22 2011
  • Mathematica
    Table[Binomial[n^n,n],{n,12}]

Formula

a(n) ~ n^(n^2) / n!. - Vaclav Kotesovec, Jul 02 2016

A371471 a(n) = binomial(n^2,n) mod n^5.

Original entry on oeis.org

0, 6, 84, 796, 5, 3792, 7, 27768, 22608, 56440, 11, 83772, 13, 168448, 61065, 471536, 17, 445320, 19, 994080, 2258235, 4188272, 23, 6083208, 156275, 743912, 13548492, 3588928, 29, 16444800, 31, 28887008, 13685133, 2841992, 42053795, 49421088, 37, 24763840, 9171162
Offset: 1

Views

Author

Seiichi Manyama, Mar 24 2024

Keywords

References

  • D. B. Fuks and Serge Tabachnikov, Mathematical Omnibus: Thirty Lectures on Classic Mathematics, American Mathematical Society, 2007. Lecture 2. Arithmetical Properties of Binomial Coefficients, pages 27-44.

Crossrefs

Programs

  • Mathematica
    A371471[n_] := Mod[Binomial[n^2, n], n^5];
    Array[A371471, 50] (* Paolo Xausa, Jul 28 2025 *)
  • PARI
    a(n) = binomial(n^2, n)%n^5;

Formula

If p is prime and p>=5, a(p) = p.
Previous Showing 31-40 of 46 results. Next