cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A259378 Palindromic numbers in bases 4 and 7 written in base 10.

Original entry on oeis.org

0, 1, 2, 3, 5, 85, 150, 235, 257, 8802, 9958, 13655, 14811, 189806, 428585, 786435, 9262450, 31946605, 34179458, 387973685, 424623193, 430421657, 640680742, 742494286, 1692399385, 22182595205, 30592589645, 1103782149121, 1134972961921, 1871644872505, 2047644601565, 3205015384750, 3304611554563, 3628335729863, 4467627704385
Offset: 1

Views

Author

Eric A. Schmidt and Robert G. Wilson v, Jul 16 2015

Keywords

Examples

			85 is in the sequence because 85_10 = 151_7 = 1111_4.
		

Crossrefs

Programs

  • Mathematica
    (* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 7]; If[palQ[pp, 4], AppendTo[lst, pp]; Print[pp]]; k++]; lst
    b1=4; b2=7; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* Vincenzo Librandi, Jul 17 2015 *)

Formula

Intersection of A014192 and A029954.

A259382 Palindromic numbers in bases 4 and 8 written in base 10.

Original entry on oeis.org

0, 1, 2, 3, 5, 63, 65, 105, 130, 170, 195, 235, 325, 341, 357, 373, 4095, 4097, 4161, 4225, 4289, 6697, 6761, 6825, 6889, 8194, 8258, 8322, 8386, 10794, 10858, 10922, 10986, 12291, 12355, 12419, 12483, 14891, 14955, 15019, 15083, 20485, 20805, 21525, 21845
Offset: 1

Views

Author

Eric A. Schmidt and Robert G. Wilson v, Jul 16 2015

Keywords

Examples

			235 is in the sequence because 235_10 = 353_8 = 3223_4.
		

Crossrefs

Programs

  • Mathematica
    (* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 8]; If[palQ[pp, 4], AppendTo[lst, pp]; Print[pp]]; k++]; lst
    b1=4; b2=8; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 30000}]; lst (* Vincenzo Librandi, Jul 17 2015 *)

Formula

Intersection of A014192 and A029803.

Extensions

Corrected and extended by Giovanni Resta, Jul 16 2015

A029986 Numbers k such that k^2 is palindromic in base 4.

Original entry on oeis.org

0, 1, 5, 17, 21, 65, 71, 83, 257, 273, 281, 317, 1025, 1055, 4097, 4161, 4193, 4401, 5157, 5179, 5221, 16385, 16511, 16865, 17239, 65537, 65793, 65921, 66753, 68695, 69521, 69777, 80739, 82053, 82171, 82309, 82885, 83301, 262145
Offset: 1

Views

Author

Keywords

Crossrefs

Numbers k such that k^2 is palindromic in base b: A003166 (b=2), A029984 (b=3), this sequence (b=4), A029988 (b=5), A029990 (b=6), A029992 (b=7), A029805 (b=8), A029994 (b=9), A002778 (b=10), A029996 (b=11), A029737 (b=12), A029998 (b=13), A030072 (b=14), A030073 (b=15), A029733 (b=16), A118651 (b=17).

Programs

  • Mathematica
    Select[Range[0,300000],IntegerDigits[#^2,4]==Reverse[ IntegerDigits[ #^2,4]]&] (* Harvey P. Dale, Dec 01 2015 *)
  • PARI
    isok(k) = my(d=digits(k^2,4)); d == Vecrev(d); \\ Michel Marcus, Jul 04 2021

A259387 Palindromic numbers in bases 4 and 9 written in base 10.

Original entry on oeis.org

0, 1, 2, 3, 5, 10, 255, 273, 373, 546, 2550, 2730, 2910, 16319, 23205, 54215, 1181729, 1898445, 2576758, 3027758, 3080174, 4210945, 9971750, 163490790, 2299011170, 6852736153, 6899910553, 160142137430, 174913133450, 204283593150, 902465909895, 1014966912315, 2292918574418, 9295288254930, 11356994802010, 11372760382810, 38244097345762
Offset: 1

Views

Author

Eric A. Schmidt and Robert G. Wilson v, Jul 16 2015

Keywords

Examples

			273 is in the sequence because 273_10 = 333_9 = 10101_4.
		

Crossrefs

Programs

  • Mathematica
    (* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 9]; If[palQ[pp, 4], AppendTo[lst, pp]; Print[pp]]; k++]; lst
    b1=4; b2=9; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* Vincenzo Librandi, Jul 17 2015 *)

Formula

Intersection of A014192 and A029955.

A118595 Palindromes in base 4 (written in base 4).

Original entry on oeis.org

0, 1, 2, 3, 11, 22, 33, 101, 111, 121, 131, 202, 212, 222, 232, 303, 313, 323, 333, 1001, 1111, 1221, 1331, 2002, 2112, 2222, 2332, 3003, 3113, 3223, 3333, 10001, 10101, 10201, 10301, 11011, 11111, 11211, 11311, 12021, 12121, 12221, 12321, 13031
Offset: 1

Views

Author

Martin Renner, May 08 2006

Keywords

Comments

2*a(n) and 3*a(n) give palindromes in base 10 for any n. - Arkadiusz Wesolowski, Jun 22 2012
Equivalently, palindromes k (written in base 10) such that 3*k is a palindrome. - Bruno Berselli, Sep 12 2018

Crossrefs

Programs

  • Mathematica
    (* get NextPalindrome from A029965 *) Select[NestList[NextPalindrome, 0, 290], Max@IntegerDigits@# < 4 &] (* Robert G. Wilson v, May 09 2006 *)
  • Python
    from gmpy2 import digits
    def A118595(n):
        if n == 1: return 0
        y = (x:=1<<(n.bit_length()-2&-2))<<2
        return int((s:=digits(n-x,4))+s[-2::-1] if nChai Wah Wu, Jun 14 2024

Extensions

More terms from Robert G. Wilson v, May 09 2006

A029958 Numbers that are palindromic in base 13.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 28, 42, 56, 70, 84, 98, 112, 126, 140, 154, 168, 170, 183, 196, 209, 222, 235, 248, 261, 274, 287, 300, 313, 326, 340, 353, 366, 379, 392, 405, 418, 431, 444, 457, 470, 483, 496, 510, 523, 536, 549, 562
Offset: 1

Views

Author

Keywords

Comments

Cilleruelo, Luca, & Baxter prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 04 2020

Crossrefs

Palindromes in bases 2 through 12: A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955, A002113, A029956, A029957.

Programs

  • Mathematica
    f[n_,b_]:=Module[{i=IntegerDigits[n,b]},i==Reverse[i]];lst={};Do[If[f[n,13],AppendTo[lst,n]],{n,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
    Select[Range[0,600],IntegerDigits[#,13]==Reverse[IntegerDigits[#,13]]&] (* Harvey P. Dale, Nov 16 2022 *)
  • PARI
    isok(n) = my(d=digits(n, 13)); d == Vecrev(d); \\ Michel Marcus, May 13 2017
    
  • Python
    from sympy import integer_log
    from gmpy2 import digits
    def A029958(n):
        if n == 1: return 0
        y = 13*(x:=13**integer_log(n>>1,13)[0])
        return int((c:=n-x)*x+int(digits(c,13)[-2::-1]or'0',13) if nChai Wah Wu, Jun 14 2024

Formula

Sum_{n>=2} 1/a(n) = 3.55686013... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020

A214425 Numbers n palindromic in exactly three bases b, 2 <= b <= 10.

Original entry on oeis.org

9, 10, 21, 40, 55, 63, 65, 80, 85, 100, 130, 154, 164, 178, 191, 195, 203, 235, 242, 255, 257, 273, 282, 292, 300, 325, 328, 341, 400, 455, 585, 656, 819, 910, 2709, 4095, 4097, 4161, 6643, 8200, 12291, 12483, 14762, 20485, 20805, 21525, 21845, 32152, 53235
Offset: 1

Views

Author

T. D. Noe, Jul 18 2012

Keywords

Comments

In the first 1234 terms, only 28 of the possible 84 triples of bases occur. Does every triple occur eventually? - T. D. Noe, Aug 17 2012
See A238893 for the three bases. By far, the most common bases are (2,4,8). - T. D. Noe, Mar 07 2014 (exception are in A260184. - Giovanni Resta and Robert G. Wilson v, Jul 17 2015).

Examples

			10 is palindromic in bases 3, 4, and 9.
273 is in the sequence because 100010001_2 = 101010_3 = 10101_4 = 2043_5 = 1133_6 = 540_7 = 421_8 = 333_9 = 273_10 and three of the bases, namely 2, 4 & 9, yield palindromes. - _Giovanni Resta_ and _Robert G. Wilson v_, Jul 17 2015
		

Crossrefs

Cf. A050813, A214423, A214424, A214426 (palindromic in 0-2 and 4 bases).

Programs

  • Mathematica
    n = -1; t = {}; While[Length[t] < 100, n++; If[Count[Table[s = IntegerDigits[n, m]; s == Reverse[s], {m, 2, 10}], True] == 3, AppendTo[t, n]]]; t

Formula

A050812(n) = 3.
The intersection of A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955 & A002113 which yields just three members. - Giovanni Resta and Robert G. Wilson v, Jul 17 2015

A029959 Numbers that are palindromic in base 14.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 30, 45, 60, 75, 90, 105, 120, 135, 150, 165, 180, 195, 197, 211, 225, 239, 253, 267, 281, 295, 309, 323, 337, 351, 365, 379, 394, 408, 422, 436, 450, 464, 478, 492, 506, 520, 534, 548, 562, 576, 591
Offset: 1

Views

Author

Keywords

Comments

Cilleruelo, Luca, & Baxter prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 04 2020

Examples

			195 is DD in base 14.
196 is 100 in base 14, so it's not in the sequence.
197 is 101 in base 14.
		

Crossrefs

Palindromes in bases 2 through 13: A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955, A002113, A029956, A029957, A029958.

Programs

  • Mathematica
    palQ[n_, b_:10] := Module[{idn = IntegerDigits[n, b]}, idn == Reverse[idn]]; Select[ Range[0, 600], palQ[#, 14] &] (* Harvey P. Dale, Aug 03 2014 *)
  • PARI
    isok(n) = Pol(d=digits(n, 14)) == Polrev(d); \\ Michel Marcus, Mar 12 2017
    
  • Python
    from sympy import integer_log
    from gmpy2 import digits
    def A029959(n):
        if n == 1: return 0
        y = 14*(x:=14**integer_log(n>>1,14)[0])
        return int((c:=n-x)*x+int(digits(c,14)[-2::-1]or'0',14) if nChai Wah Wu, Jun 14 2024

Formula

Sum_{n>=2} 1/a(n) = 3.6112482... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020

A029960 Numbers that are palindromic in base 15.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 226, 241, 256, 271, 286, 301, 316, 331, 346, 361, 376, 391, 406, 421, 436, 452, 467, 482, 497, 512, 527, 542, 557, 572, 587, 602, 617
Offset: 1

Views

Author

Keywords

Comments

Cilleruelo, Luca, & Baxter prove that this sequence is an additive basis of order (exactly) 3. - Charles R Greathouse IV, May 04 2020

Crossrefs

Programs

  • Mathematica
    f[n_,b_]:=Module[{i=IntegerDigits[n,b]},i==Reverse[i]];lst={};Do[If[f[n,15],AppendTo[lst,n]],{n,7!}];lst (* Vladimir Joseph Stephan Orlovsky, Jul 08 2009 *)
    Select[Range@ 620, PalindromeQ@ IntegerDigits[#, 15] &] (* Michael De Vlieger, May 13 2017, Version 10.3 *)
  • PARI
    isok(n) = my(d=digits(n, 15)); d == Vecrev(d); \\ Michel Marcus, May 14 2017
    
  • Python
    from sympy import integer_log
    from gmpy2 import digits
    def A029960(n):
        if n == 1: return 0
        y = 15*(x:=15**integer_log(n>>1,15)[0])
        return int((c:=n-x)*x+int(digits(c,15)[-2::-1]or'0',15) if nChai Wah Wu, Jun 14 2024

Formula

Sum_{n>=2} 1/a(n) = 3.66254285... (Phunphayap and Pongsriiam, 2019). - Amiram Eldar, Oct 17 2020

A262065 Numbers that are palindromes in base-60 representation.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 122, 183, 244, 305, 366
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 10 2015

Keywords

Examples

			.      n | a(n) |  base 60          n |  a(n) |  base 60
.   -----+------+-----------    ------+-------+--------------
.    100 | 2440 | [40, 40]       1000 | 56415 | [15, 40, 15]
.    101 | 2501 | [41, 41]       1001 | 56475 | [15, 41, 15]
.    102 | 2562 | [42, 42]       1002 | 56535 | [15, 42, 15]
.    103 | 2623 | [43, 43]       1003 | 56595 | [15, 43, 15]
.    104 | 2684 | [44, 44]       1004 | 56655 | [15, 44, 15]
.    105 | 2745 | [45, 45]       1005 | 56715 | [15, 45, 15]
.    106 | 2806 | [46, 46]       1006 | 56775 | [15, 46, 15]
.    107 | 2867 | [47, 47]       1007 | 56835 | [15, 47, 15]
.    108 | 2928 | [48, 48]       1008 | 56895 | [15, 48, 15]
.    109 | 2989 | [49, 49]       1009 | 56955 | [15, 49, 15]
.    110 | 3050 | [50, 50]       1010 | 57015 | [15, 50, 15]
.    111 | 3111 | [51, 51]       1011 | 57075 | [15, 51, 15]
.    112 | 3172 | [52, 52]       1012 | 57135 | [15, 52, 15]
.    113 | 3233 | [53, 53]       1013 | 57195 | [15, 53, 15]
.    114 | 3294 | [54, 54]       1014 | 57255 | [15, 54, 15]
.    115 | 3355 | [55, 55]       1015 | 57315 | [15, 55, 15]
.    116 | 3416 | [56, 56]       1016 | 57375 | [15, 56, 15]
.    117 | 3477 | [57, 57]       1017 | 57435 | [15, 57, 15]
.    118 | 3538 | [58, 58]       1018 | 57495 | [15, 58, 15]
.    119 | 3599 | [59, 59]       1019 | 57555 | [15, 59, 15]
.    120 | 3601 | [1, 0, 1]      1020 | 57616 | [16, 0, 16]
.    121 | 3661 | [1, 1, 1]      1021 | 57676 | [16, 1, 16]
.    122 | 3721 | [1, 2, 1]      1022 | 57736 | [16, 2, 16]
.    123 | 3781 | [1, 3, 1]      1023 | 57796 | [16, 3, 16]
.    124 | 3841 | [1, 4, 1]      1024 | 57856 | [16, 4, 16]
.    125 | 3901 | [1, 5, 1]      1025 | 57916 | [16, 5, 16]  .
		

Crossrefs

Cf. A262079 (first differences).
Intersection with A002113: A262069.
Corresponding sequences for bases 2 through 12: A006995, A014190, A014192, A029952, A029953, A029954, A029803, A029955, A002113, A029956, A029957.

Programs

  • Haskell
    import Data.List.Ordered (union)
    a262065 n = a262065_list !! (n-1)
    a262065_list = union us vs where
       us = [val60 $ bs ++ reverse bs | bs <- bss]
       vs = [0..59] ++ [val60 $ bs ++ cs ++ reverse bs |
              bs <- tail bss, cs <- take 60 bss]
       bss = iterate s [0] where
             s [] = [1]; s (59:ds) = 0 : s ds; s (d:ds) = (d + 1) : ds
       val60 = foldr (\b v -> 60 * v + b) 0
    
  • Magma
    [n: n in [0..600] | Intseq(n, 60) eq Reverse(Intseq(n, 60))]; // Vincenzo Librandi, Aug 24 2016
    
  • Mathematica
    f[n_, b_]:=Module[{i=IntegerDigits[n, b]}, i==Reverse[i]]; lst={}; Do[If[f[n, 60], AppendTo[lst, n]], {n, 400}]; lst (* Vincenzo Librandi, Aug 24 2016 *)
    pal60Q[n_]:=Module[{idn60=IntegerDigits[n,60]},idn60==Reverse[idn60]]; Select[Range[0,400],pal60Q] (* Harvey P. Dale, Nov 04 2017 *)
  • PARI
    isok(m) = my(d=digits(m, 60)); d == Vecrev(d); \\ Michel Marcus, Jan 22 2022
    
  • Python
    from sympy import integer_log
    from gmpy2 import digits, mpz
    def A262065(n):
        if n == 1: return 0
        y = 60*(x:=60**integer_log(n>>1,60)[0])
        return int((c:=n-x)*x+mpz(digits(c,60)[-2::-1]or'0',60) if nChai Wah Wu, Jun 13-14 2024
Previous Showing 11-20 of 31 results. Next