cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-39 of 39 results.

A152737 a(n) = floor(n^phi) where phi is the golden ratio.

Original entry on oeis.org

0, 1, 3, 5, 9, 13, 18, 23, 28, 34, 41, 48, 55, 63, 71, 79, 88, 97, 107, 117, 127, 137, 148, 159, 171, 182, 194, 207, 219, 232, 245, 258, 272, 286, 300, 315, 329, 344, 359, 375, 391, 406, 423, 439, 456, 473, 490, 507, 525, 542, 561, 579, 597, 616, 635, 654, 673
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    phi:=(1+Sqrt(5))/2; [Floor(n^phi): n in [0..50]]; // G. C. Greubel, Sep 01 2018
  • Mathematica
    a[n_]:=Floor[n^GoldenRatio];
  • PARI
    a(n)=floor(n^((1+sqrt(5))/2)) \\ Charles R Greathouse IV, Jul 29 2011
    

Extensions

Offset changed to 0 by Georg Fischer, Oct 19 2024

A169613 Triangular array: T(n,k)=floor(F(n)/F(n-k)), k=1,2,...,n-2; n>=3, where F=A000045 (Fibonacci numbers).

Original entry on oeis.org

2, 1, 3, 1, 2, 5, 1, 2, 4, 8, 1, 2, 4, 6, 13, 1, 2, 4, 7, 10, 21, 1, 2, 4, 6, 11, 17, 34, 1, 2, 4, 6, 11, 18, 27, 55, 1, 2, 4, 6, 11, 17, 29, 44, 89, 1, 2, 4, 6, 11, 18, 28, 48, 72, 144, 1, 2, 4, 6, 11, 17, 29, 46, 77, 116, 233, 1, 2, 4, 6, 11, 17, 29, 47, 75, 125, 188, 377, 1, 2, 4, 6, 11
Offset: 3

Views

Author

Clark Kimberling, Dec 03 2009

Keywords

Comments

Combinatorial limit of row n is essentially A014217.

Examples

			The first 6 rows:
2
1 3
1 2 5
1 2 4 8
1 2 4 6 13
1 2 4 7 10 21
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := Floor[Fibonacci[n]/Fibonacci[n-k]]; Table[T[n, k], {n, 3, 15}, {k, 1, n-2}] // Flatten (* Jean-François Alcover, Jul 16 2017 *)
  • Python
    from sympy import fibonacci as F, floor
    def T(n, k): return floor(F(n)/F(n - k))
    for n in range(3, 16): print([T(n, k) for k in range(1, n - 1)]) # Indranil Ghosh, Jul 17 2017

Extensions

Offset corrected by Jean-François Alcover, Jul 16 2017

A142710 a(n) = A142585(n) + A142586(n).

Original entry on oeis.org

2, 2, 6, 14, 38, 112, 276, 814, 1998, 5702, 14226, 39404, 99908, 270922, 695106, 1859134, 4807518, 12748472, 33128916, 87394454, 227792678, 599050102, 1564242906, 4106054164, 10733283588, 28143585362, 73614464826, 192899714414, 504751433798, 1322156172352
Offset: 0

Views

Author

Paul Curtz, Sep 25 2008

Keywords

Comments

Sum of the binomial and inverse binomial transforms of A014217.
Starting at a(1), the last digits form a period-4 sequence 2, 6, 4, 8.

Crossrefs

Programs

  • Magma
    [n eq 0 select 2 else (-1)^n*Lucas(n) +Lucas(2*n) -(1+(-1)^n)*2^(n-1): n in [0..50]]; // G. C. Greubel, Oct 26 2022
    
  • Mathematica
    Join[{2},LinearRecurrence[{2,7,-12,-11,16,-4},{2,6,14,38,112,276},30]] (* Harvey P. Dale, Nov 25 2013 *)
  • SageMath
    def A142710(n): return (-1)^n*lucas_number2(n,1,-1) + lucas_number2(2*n,1,-1) - (1 + (-1)^n)*2^(n-1) -int(n==0)
    [A142710(n) for n in range(51)] # G. C. Greubel, Oct 26 2022

Formula

a(n) = +2*a(n-1) +7*a(n-2) -12*a(n-3) -11*a(n-4) +16*a(n-5) -4*a(n-6), n>6. - R. J. Mathar, Jun 14 2010
G.f.: 2*(1-x-6*x^2+6*x^3+7*x^4-2*x^6)/((1-2*x)*(1+2*x)*(1+x-x^2)*(1-3*x+x^2)). - Colin Barker, Aug 13 2012
a(n) = (-1)^n*LucasL(n) + LucasL(2*n) - (1 + (-1)^n)*2^(n-1) - [n=0]. - G. C. Greubel, Oct 26 2022

Extensions

Offset set to zero and extended - R. J. Mathar, Jun 14 2010

A350092 a(n) = floor(x^n) where x = 1 + sqrt(5)/2 = A176055.

Original entry on oeis.org

1, 2, 4, 9, 20, 42, 90, 191, 405, 857, 1816, 3848, 8150, 17263, 36564, 77445, 164031, 347423, 735855, 1558567, 3301098, 6991839, 14808952, 31365865, 66433969, 140709405, 298027302, 631231956, 1336970739, 2831749467, 5997741619, 12703420605, 26906276616
Offset: 0

Views

Author

Michel Lagneau, Dec 14 2021

Keywords

Comments

a(n+1)/a(n) tends to A176055 when n tends towards infinity.

Crossrefs

Cf. A176055, A058066 (x*n), A014217 (phi^n).

Programs

  • Maple
    seq(floor((1+sqrt(5)/2)^n), n=0..32);
  • Mathematica
    a[n_] := Floor[(GoldenRatio + 1/2)^n]; Array[a, 33, 0] (* Amiram Eldar, Dec 14 2021 *)
  • Python
    from sympy import floor, sqrt
    def A350092(n): return floor((1+sqrt(5)/2)**n) # Chai Wah Wu, Dec 17 2021

A057146 The sequence 2, floor(a), floor(a^2), floor(a^3), ..., with a = 1+sqrt(5).

Original entry on oeis.org

2, 3, 10, 33, 109, 354, 1148, 3716, 12026, 38918, 125943, 407562, 1318899, 4268047, 13811692, 44695576, 144637922, 468058148, 1514667986, 4901568568, 15861809082, 51329892437, 166107021206, 537533612162, 1739495309150, 5629125066952, 18216231370504
Offset: 0

Views

Author

N. J. A. Sloane, Sep 12 2000, May 14 2007

Keywords

Crossrefs

Cf. A014217.

Programs

  • Magma
    [2] cat [Floor((1+Sqrt(5))^n): n in [1..30]]; // Vincenzo Librandi, Feb 20 2016
  • Mathematica
    Join[{2}, Table[Floor[(Sqrt[5] + 1)^n], {n, 1, 30}]] (* Artur Jasinski, Nov 22 2006 *)
  • PARI
    a(n) = if (n==0, 2, floor((1+sqrt(5))^n)); \\ Michel Marcus, Feb 19 2016
    

Formula

a(n) = floor( (1+sqrt(5))^n ) for n>0, a(0)=2. - Artur Jasinski, Nov 22 2006

A228560 Curvature (rounded down) of the circle inscribed in the n-th golden triangle arranged in a spiral form.

Original entry on oeis.org

2, 4, 7, 11, 18, 30, 49, 79, 129, 209, 338, 547, 886, 1434, 2320, 3754, 6075, 9830, 15905, 25735, 41641, 67376, 109017, 176394, 285412, 461806, 747218, 1209024
Offset: 1

Views

Author

Kival Ngaokrajang, Aug 25 2013

Keywords

Comments

Starting with a golden triangle whose base is of length 1 and whose sides are of length phi = (1+sqrt(5))/2, create the next golden triangle at the base of the previous triangle, i.e., sides length = 1 and base length = phi-1, and so on. a(n) is the floor of the curvature (inverse of the radius) of the circle inscribed in the n-th triangle.
The golden triangles created by this process are the same as the golden triangles inscribed in a logarithmic spiral.
The logarithmic spiral can be approximated by circular arcs of radii 1, phi-1, (phi-1)^2, ... which are the sides of bisected golden gnomons and center located at their related apex. The sequence whose n-th term is the curvature (rounded down) of the n-th such circular arc is A014217. See illustration in link.

Crossrefs

Cf. A001521 (for 45-45-90 triangles), A065565 (for 3:4:5 triangles), A014217.

A140471 Floored n-th power of Viswanath's constant.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 22, 25, 28, 32, 36, 41, 46, 52, 59, 67, 76, 86, 98, 111, 125, 142, 161, 182, 206, 233, 264, 299, 339, 384, 434, 492, 557, 630, 713, 808, 914, 1035, 1172, 1326, 1502, 1700, 1924
Offset: 0

Views

Author

Alonso del Arte, Jun 28 2008

Keywords

Comments

For sufficiently large terms of a random Fibonacci sequence, the powers of Viswanath's constant approximate the absolute value of the terms in such a sequence (with a few notable exceptions).

Examples

			a(7) = 2 because V^7 is approximately 2.381734947432 and floored that is 2.
		

Crossrefs

Cf. A014217, floored n-th power of the golden ratio; A000149, floored n-th power of e; A001672, floored n-th power of Pi.

Programs

  • Mathematica
    V = 1.1319882487943; Table[Floor[V^n], {n, 0, 49}]

Formula

a(n) = floor(v^n), where v = 1.1319882487943 as given by A078416.

Extensions

More terms from Alois P. Heinz, Mar 08 2020

A277752 a(n) = Sum_{k=0..n} (-1)^k*floor(phi^k), where phi is the golden ratio (A001622).

Original entry on oeis.org

1, 0, 2, -2, 4, -7, 10, -19, 27, -49, 73, -126, 195, -326, 516, -848, 1358, -2213, 3564, -5785, 9341, -15135, 24467, -39612, 64069, -103692, 167750, -271454, 439192, -710659, 1149838, -1860511, 3010335, -4870861, 7881181, -12752058, 20633223, -33385298, 54018504, -87403820, 141422306
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 31 2016

Keywords

Comments

Alternating sum of A014217.

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[(-1)^n Floor[GoldenRatio^n], {n, 0, 40}]]
    LinearRecurrence[{0, 3, -1, -2, 1}, {1, 0, 2, -2, 4}, 41]

Formula

G.f.: (1 - x^2 - x^3)/((1 - x)^2*(1 + 2*x - x^3)).
a(n) = 3*a(n-2) - a(n-3) - 2*a(n-4) + a(n-5).
a(n) = Sum_{k=0..n} (-1)^k*floor(Fibonacci(2k+3)/Fibonacci(k+3)).
a(n) = Sum_{k=0..n} (-1)^k*(L(k) - (1 + (-1)^k)/2), where L(k) is the Lucas numbers beginning at 2 (A000032).
a(n) = 2^(-n-2)*(9*2^n - 2^(n+1)*n - (-2)^n - 2*(1 + sqrt(5))*(sqrt(5) - 1)^n + 2*(sqrt(5) - 1)*(-1-sqrt(5))^n).
a(n) ~ (-1)^n*phi^(n-1).
a(n) = (-1)^n*Lucas(n-1) - (1/4)*(2*n -9 +(-1)^n). - G. C. Greubel, Oct 31 2016

A301653 Expansion of x*(1 + 2*x)/((1 - x)*(1 + x)*(1 - x - x^2)).

Original entry on oeis.org

0, 1, 3, 5, 10, 16, 28, 45, 75, 121, 198, 320, 520, 841, 1363, 2205, 3570, 5776, 9348, 15125, 24475, 39601, 64078, 103680, 167760, 271441, 439203, 710645, 1149850, 1860496, 3010348, 4870845, 7881195, 12752041, 20633238, 33385280, 54018520, 87403801, 141422323, 228826125, 370248450
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 25 2018

Keywords

Comments

Apparently (for n > 0), numbers that have a unique partition into a sum of distinct Lucas numbers (A000204).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (1 + 2 x)/((1 - x) (1 + x) (1 - x - x^2)) , {x, 0, 40}], x]
    LinearRecurrence[{1, 2, -1, -1}, {0, 1, 3, 5}, 41]
    Table[LucasL[n + 1] - (3 - (-1)^n)/2, {n, 0, 40}]
    Table[Floor[GoldenRatio^(n + 1)] - 1, {n, 0, 40}]
  • PARI
    a(n) = fibonacci(n) + fibonacci(n+2) + ((-1)^n - 3)/2; \\ Altug Alkan, Mar 25 2018

Formula

G.f.: x*(1 + 2*x)/((1 - x)*(1 + x)*(1 - x - x^2)).
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4).
a(n) = Lucas(n+1) - (3 - (-1)^n)/2.
a(n) = floor(phi^(n+1)) - 1, where phi = (1 + sqrt(5))/2 is the golden ratio (A001622).
a(n) = Sum_{k>=0} A051601(n-k,k) (conjectured). - Greg Dresden, May 18 2023
Previous Showing 31-39 of 39 results.