A105851
Binomial transform triangle, read by rows.
Original entry on oeis.org
1, 2, 1, 4, 3, 1, 8, 8, 4, 1, 16, 20, 12, 5, 1, 32, 48, 32, 16, 6, 1, 64, 112, 80, 44, 20, 7, 1, 128, 256, 192, 112, 56, 24, 8, 1, 256, 576, 448, 272, 144, 68, 28, 9, 1, 512, 1280, 1024, 640, 352, 176, 80, 32, 10, 1, 1024, 2816, 2304, 1472, 832, 432, 208, 92, 36, 11, 1
Offset: 0
Column 3: 1, 5, 16, 44, 112, ... (A053220) is the binomial transform of 3k+1 (A016777: 1, 4, 7, ...).
Triangle begins:
1;
2, 1;
4, 3, 1;
8, 8, 4, 1;
16, 20, 12, 5, 1;
32, 48, 32, 16, 6, 1;
64, 112, 80, 44, 20, 7, 1;
128, 256, 192, 112, 56, 24, 8, 1;
256, 576, 448, 272, 144, 68, 28, 9, 1;
512, 1280, 1024, 640, 352, 176, 80, 32, 10, 1;
1024, 2816, 2304, 1472, 832, 432, 208, 92, 36, 11, 1;
...
-
/* As triangle */ [[(2+k*(n-k))*2^(n-k-1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jul 26 2015
-
seq(seq((2 + k*(n - k))*2^(n-k-1),k=0..n),n=0..10); # Peter Bala, Jul 26 2015
-
t[n_, k_]:=(2 + k (n - k)) 2^(n - k - 1); Table[t[n - 1, k - 1], {n, 10}, {k, n}]//Flatten (* Vincenzo Librandi, Jul 26 2015 *)
A126063
Triangle read by rows: see A128196 for definition.
Original entry on oeis.org
1, 1, 2, 3, 6, 4, 15, 30, 20, 8, 105, 210, 140, 56, 16, 945, 1890, 1260, 504, 144, 32, 10395, 20790, 13860, 5544, 1584, 352, 64, 135135, 270270, 180180, 72072, 20592, 4576, 832, 128, 2027025, 4054050, 2702700, 1081080, 308880, 68640, 12480, 1920, 256
Offset: 0
Triangle begins:
1
1, 2
3, 6, 4
15, 30, 20, 8
105, 210, 140, 56, 16
945, 1890, 1260, 504, 144, 32
10395, 20790, 13860, 5544, 1584, 352, 64
135135, 270270, 180180, 72072, 20592, 4576, 832, 128
-
A126063 := (n,k) -> 2^k*doublefactorial(2*n-1)/ doublefactorial(2*k-1); seq(print(seq(A126063(n,k),k=0..n)),n=0..7); # Peter Luschny, Dec 20 2012
-
Flatten[Table[2^k (2n - 1)!!/(2k - 1)!!, {n, 0, 8}, {k, 0, n}]] (* Ivan Neretin, May 11 2015 *)
A204203
Triangle based on (0,1/4,1) averaging array.
Original entry on oeis.org
1, 1, 5, 1, 6, 13, 1, 7, 19, 29, 1, 8, 26, 48, 61, 1, 9, 34, 74, 109, 125, 1, 10, 43, 108, 183, 234, 253, 1, 11, 53, 151, 291, 417, 487, 509, 1, 12, 64, 204, 442, 708, 904, 996, 1021, 1, 13, 76, 268, 646, 1150, 1612, 1900, 2017, 2045, 1, 14, 89, 344, 914
Offset: 1
First six rows:
1
1...5
1...6...13
1...7...19...29
1...8...26...48...61
1...9...34...74...109...125
-
a = 0; r = 1/4; b = 1; t[1, 1] = r;
t[n_, 1] := (a + t[n - 1, 1])/2;
t[n_, n_] := (b + t[n - 1, n - 1])/2;
t[n_, k_] := (t[n - 1, k - 1] + t[n - 1, k])/2;
u[n_] := Table[t[n, k], {k, 1, n}]
Table[u[n], {n, 1, 5}] (* averaging array *)
u = Table[(1/2) (1/r) 2^n*u[n], {n, 1, 12}];
TableForm[u] (* A204203 triangle *)
Flatten[u] (* A204203 sequence *)
A257791
Rectangular array A read by upward antidiagonals in which the entry in row n and column k is defined by A(n,k) = 2^(n+1)*(2*k - 1), n,k >= 1.
Original entry on oeis.org
4, 8, 12, 16, 24, 20, 32, 48, 40, 28, 64, 96, 80, 56, 36, 128, 192, 160, 112, 72, 44, 256, 384, 320, 224, 144, 88, 52, 512, 768, 640, 448, 288, 176, 104, 60, 1024, 1536, 1280, 896, 576, 352, 208, 120, 68, 2048, 3072, 2560, 1792, 1152, 704, 416, 240, 136, 76
Offset: 1
Array A begins:
. 4 12 20 28 36 44 52 60 68 76
. 8 24 40 56 72 88 104 120 136 152
. 16 48 80 112 144 176 208 240 272 304
. 32 96 160 224 288 352 416 480 544 608
. 64 192 320 448 576 704 832 960 1088 1216
. 128 384 640 896 1152 1408 1664 1920 2176 2432
. 256 768 1280 1792 2304 2816 3328 3840 4352 4864
. 512 1536 2560 3584 4608 5632 6656 7680 8704 9728
. 1024 3072 5120 7168 9216 11264 13312 15360 17408 19456
. 2048 6144 10240 14336 18432 22528 26624 30720 34816 38912
-
(* Array: *)
A257791[n_, k_] := 2^(n + 1)*(2*k - 1); Grid[Table[A257791[n, k], {n, 10}, {k, 10}]]
(* Array antidiagonals flattened: *)
Flatten[Table[2^(n - k + 2)*(2*k - 1), {n, 10}, {k, n}]]
A339771
a(n) = Sum_{i=0..n} Sum_{j=0..n} 2^max(i,j).
Original entry on oeis.org
1, 7, 27, 83, 227, 579, 1411, 3331, 7683, 17411, 38915, 86019, 188419, 409603, 884739, 1900547, 4063235, 8650755, 18350083, 38797315, 81788931, 171966467, 360710147, 754974723, 1577058307, 3288334339, 6845104131, 14227079171, 29527900163, 61203283971
Offset: 0
- Eric Billault, Walter Damin, Robert Ferréol, Rodolphe Garin, MPSI Classes Prépas - Khôlles de Maths, Exercices corrigés, Ellipses, 2012, exercice 2.22 (2), pp. 26, 43-44.
Cf.
A142964 (with min instead of max).
-
seq((2*n-1)*2^(n+1)+3,n=0..40);
-
Table[(2*n - 1)*2^(n + 1) + 3, {n, 0, 29}] (* Amiram Eldar, Dec 16 2020 *)
-
a(n) = sum(i=0, n, sum(j=0, n, 2^max(i,j))); \\ Michel Marcus, Dec 16 2020
-
def A339771():
a, b, c = 1, 7, 27
yield(a); yield(b)
while True:
yield c
z = 4*a - 8*b + 5*c
a, b, c = b, c, z
a = A339771()
print([next(a) for in range(30)]) # _Peter Luschny, Dec 17 2020
Original entry on oeis.org
1, 3, 3, 5, 10, 5, 7, 21, 21, 7, 9, 36, 54, 36, 9, 11, 55, 110, 110, 55, 11, 13, 78, 195, 260, 195, 78, 13, 15, 105, 315, 525, 525, 315, 105, 15, 17, 136, 476, 952, 1190, 952, 476, 136, 17, 19, 171, 684, 1596, 2394, 2394, 1596, 684, 171, 19
Offset: 0
First few rows of the triangle:
1;
3, 3;
5, 10, 5;
7, 21, 21, 7;
9, 36, 54, 36, 9;
11, 55, 110, 110, 55, 11;
13, 78, 195, 260, 195, 78, 13;
15, 105, 315, 525, 525, 315, 105, 15;
...
Row 3 = (7, 21, 21, 7) = 7 * (1, 3, 3, 1).
Original entry on oeis.org
1, 5, 1, 9, 10, 1, 13, 27, 15, 1, 17, 52, 54, 20, 1, 21, 85, 130, 90, 25, 25, 126, 255, 260, 135, 30, 1, 29, 175, 441, 595, 455, 189, 35, 33, 232, 700, 1176, 1190, 728, 252, 40, 1, 37, 297, 1044, 2100, 2646, 2142, 1092, 324, 45, 1
Offset: 0
First few rows of the triangle:
1;
5, 1;
9, 10, 1;
13, 27, 15, 1;
17, 52, 54, 20, 1;
21, 85, 130, 90, 25, 1;
...
A185342
Triangle of successive recurrences in columns of A117317(n).
Original entry on oeis.org
2, 4, -4, 6, -12, 8, 8, -24, 32, -16, 10, -40, 80, -80, 32, 12, -60, 160, -240, 192, -64, 14, -84, 280, -560, 672, -448, 128, 16, -112, 448, -1120, 1792, -1792, 1024, -256, 18, -144, 672, -2016, 4032, -5376, 4608, -2304, 512, 20, -180, 960, -3360, 8064
Offset: 0
Triangle T(n,k),for 1<=k<=n, begins :
2 (1)
4 -4 (2)
6 -12 8 (3)
8 -24 32 -16 (4)
10 -40 80 -80 32 (5)
12 -60 160 -240 192 -64 (6)
14 -84 280 -560 672 -448 128 (7)
16 -112 448 -1120 1792 -1792 1024 -256 (8)
Successive rows can be divided by A171977.
-
Table[(-1)*Binomial[n, k]*(-2)^k, {n, 1, 20}, {k, 1, n}] // Flatten (* G. C. Greubel, Jun 27 2017 *)
-
for(n=1,20, for(k=1,n, print1((-2)^(k+1)*binomial(n,k)/2, ", "))) \\ G. C. Greubel, Jun 27 2017
A261349
T(n,k) is the decimal equivalent of a code for k that maximizes the sum of the Hamming distances between (cyclical) adjacent code words; triangle T(n,k), n>=0, 0<=k<=2^n-1, read by rows.
Original entry on oeis.org
0, 0, 1, 0, 3, 1, 2, 0, 7, 1, 6, 3, 4, 2, 5, 0, 15, 1, 14, 3, 12, 2, 13, 6, 9, 7, 8, 5, 10, 4, 11, 0, 31, 1, 30, 3, 28, 2, 29, 6, 25, 7, 24, 5, 26, 4, 27, 12, 19, 13, 18, 15, 16, 14, 17, 10, 21, 11, 20, 9, 22, 8, 23, 0, 63, 1, 62, 3, 60, 2, 61, 6, 57, 7, 56, 5
Offset: 0
Triangle T(n,k) begins:
0;
0, 1;
0, 3, 1, 2;
0, 7, 1, 6, 3, 4, 2, 5;
0, 15, 1, 14, 3, 12, 2, 13, 6, 9, 7, 8, 5, 10, 4, 11;
0, 31, 1, 30, 3, 28, 2, 29, 6, 25, 7, 24, 5, 26, 4, 27, 12, 19, ... ;
0, 63, 1, 62, 3, 60, 2, 61, 6, 57, 7, 56, 5, 58, 4, 59, 12, 51, ... ;
-
g:= n-> Bits[Xor](n, iquo(n, 2)):
T:= (n, k)-> (t-> `if`(m=0, t, 2^n-1-t))(g(iquo(k, 2, 'm'))):
seq(seq(T(n, k), k=0..2^n-1), n=0..6);
A264735
a(n) = prime(2^(n-1)*(2*n-1)), n >= 1.
Original entry on oeis.org
2, 13, 71, 263, 827, 2377, 6379, 16603, 41611, 101573, 243473, 573637, 1333613, 3065983, 6975971, 15746347, 35277211, 78510373, 173717329, 382404863, 837870343, 1828047503, 3973066781, 8604768101, 18576139177, 39983413319
Offset: 1
Comments