cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 191 results. Next

A002132 Generalized sum of divisors function.

Original entry on oeis.org

1, 2, 4, 8, 14, 18, 28, 40, 52, 70, 88, 104, 140, 168, 196, 240, 278, 320, 380, 440, 504, 562, 644, 720, 808, 910, 1000, 1120, 1240, 1360, 1488, 1600, 1789, 1938, 2100, 2296, 2452, 2660, 2880, 3080, 3292, 3542, 3784, 4048, 4400, 4572, 4868, 5280, 5502, 5850
Offset: 4

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A060047.
Cf. A015128.

Programs

  • Mathematica
    nmax = 60; Drop[CoefficientList[Series[1/2 * Sum[(-1)^k*k*Binomial[k + 1, 3]*x^(k^2), {k, 2, nmax}]/(1 + 2*Sum[(-x)^(k^2), {k, 1, nmax}]), {x, 0, nmax}], x], 4] (* Vaclav Kotesovec, Jul 30 2025 *)

Formula

G.f.: (1/2) * ( Sum_{k>=2} (-1)^k * k * binomial(k+1,3) * q^(k^2) ) / ( 1 + 2 * Sum_{k>=1} (-q)^(k^2) ). - Seiichi Manyama, Sep 15 2023

Extensions

More terms from Naohiro Nomoto and Vladeta Jovovic, Jan 25 2002

A060046 Generalized sum of divisors function: third diagonal of A060047.

Original entry on oeis.org

1, 2, 4, 8, 14, 24, 40, 56, 84, 122, 168, 232, 312, 408, 528, 672, 865, 1078, 1336, 1648, 2002, 2424, 2912, 3472, 4116, 4872, 5744, 6648, 7752, 8976, 10304, 11872, 13566, 15424, 17556, 19896, 22414, 25256, 28336, 31584, 35462, 39482, 43728, 48664
Offset: 9

Views

Author

N. J. A. Sloane, Mar 19 2001

Keywords

Crossrefs

Cf. A015128.

Programs

  • Mathematica
    nmax = 60; Drop[CoefficientList[Series[-1/3 * Sum[(-1)^k*k*Binomial[k + 2, 5]*x^(k^2), {k, 3, nmax}]/(1 + 2*Sum[(-x)^(k^2), {k, 1, nmax}]), {x, 0, nmax}], x], 9] (* Vaclav Kotesovec, Jul 30 2025 *)

Formula

G.f.: (t(1)^3-3*t(1)*t(2)+2*t(3))/6 where t(i) = Sum((x^(2*n-1)/(1-x^(2*n-1))^2)^i,n=1..inf), i=1..3. - Vladeta Jovovic, Sep 21 2007
G.f.: -(1/3) * ( Sum_{k>=3} (-1)^k * k * binomial(k+2,5) * q^(k^2) ) / ( 1 + 2 * Sum_{k>=1} (-q)^(k^2) ). - Seiichi Manyama, Sep 15 2023

Extensions

More terms from Naohiro Nomoto, Jan 24 2002
More terms from Vladeta Jovovic, Sep 21 2007

A261647 Expansion of Product_{k>=0} ((1+x^(2*k+1))/(1-x^(2*k+1)))^3.

Original entry on oeis.org

1, 6, 18, 44, 102, 216, 428, 816, 1494, 2650, 4584, 7740, 12804, 20808, 33264, 52400, 81462, 125100, 189966, 285516, 425016, 627040, 917436, 1331856, 1919332, 2746926, 3905784, 5519352, 7754064, 10833192, 15055216, 20817600, 28647414, 39241336, 53517060
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 28 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[((1+x^(2*k+1))/(1-x^(2*k+1)))^3,{k,0,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ exp(Pi*sqrt(3*n/2)) * 3^(1/4) / (8 * 2^(1/4) * n^(3/4)).

A265844 Expansion of Product_{k>=1} (1 + k^2*x^k)/(1 - k^2*x^k).

Original entry on oeis.org

1, 2, 10, 36, 118, 376, 1188, 3456, 10054, 28814, 79280, 215844, 581748, 1528456, 3987384, 10295952, 26130982, 65874532, 164661622, 406787220, 998529752, 2434022304, 5879630196, 14124455856, 33734350692, 80000820426, 188787849968, 443372664504, 1035137265552
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 16 2015

Keywords

Comments

Convolution of A092484 and A077335.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1 + k^2*x^k)/(1 - k^2*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 3^(2*n/3), where
c = 33024.782174678163138510272317... if mod(n,3) = 0
c = 33024.230416953709449028604542... if mod(n,3) = 1
c = 33024.292470246596667257649964... if mod(n,3) = 2.

A266821 Expansion of Product_{k>=1} (1 + 3*x^k) / (1 - x^k).

Original entry on oeis.org

1, 4, 8, 24, 44, 88, 176, 312, 544, 924, 1584, 2552, 4136, 6488, 10128, 15632, 23748, 35640, 53080, 78136, 114024, 165552, 237744, 339544, 481248, 678236, 949008, 1321840, 1830376, 2521688, 3456672, 4717208, 6406680, 8666448, 11672464, 15660528, 20934868
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 04 2016

Keywords

Comments

Convolution of A000041 and A032308.
In general, for m > 0, if g.f. = Product_{k>=1} ((1 + m*x^k) / (1 - x^k)) then a(n) ~ sqrt(c) * exp(sqrt(2*c*n)) / (4*Pi*sqrt(m+1)*n), where c = 2*Pi^2/3 + log(m)^2 + 2*polylog(2, -1/m).

Crossrefs

Column k=4 of A321884.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          (t-> b(t, min(t, i-1)))(n-i*j), j=1..n/i)*4 +b(n, i-1)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..44);  # Alois P. Heinz, Aug 28 2019
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+3*x^k) / (1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]
  • PARI
    { my(n=40); Vec(prod(k=1, n, 4/(1-x^k) - 3 + O(x*x^n))) } \\ Andrew Howroyd, Dec 22 2017

Formula

a(n) ~ sqrt(c) * exp(sqrt(2*c*n)) / (8*Pi*n), where c = 2*Pi^2/3 + log(3)^2 + 2*polylog(2, -1/3) = 7.16861897522987077909937377164783326088308015803... .

A278690 Expansion of Product_{n>=1} (1 - x^(3*n))/(1 - x^n)^2 in powers of x.

Original entry on oeis.org

1, 2, 5, 9, 18, 31, 54, 88, 144, 225, 351, 531, 800, 1179, 1728, 2492, 3573, 5058, 7119, 9918, 13743, 18882, 25810, 35028, 47313, 63513, 84883, 112833, 149373, 196803, 258309, 337590, 439650, 570357, 737496, 950270, 1220688, 1563021, 1995642, 2540466, 3225386
Offset: 0

Views

Author

Seiichi Manyama, Nov 26 2016

Keywords

Examples

			G.f. = 1 + 2*x + 5*x^2 + 9*x^3 + 18*x^4 + 31*x^5 + 54*x^6 + ...
G.f. = q + 2*q^25 + 5*q^49 + 9*q^73 + 18*q^97 + 31*q^121 + 54*q^145 + ... - _Michael Somos_, Nov 25 2019
		

Crossrefs

Cf. Product_{n>=1} (1 - x^(3*n))/(1 - x^n)^k: A000726 (k=1), this sequence (k=2), A273845 (k=3), A182819 (k=4).
Cf. Product_{n>=1} (1 - x^(k*n))/(1 - x^n)^2: A000041 (k=1), A015128 (k=2), this sequence (k=3), A160461 (k=5).
Cf. A298311.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(3*k))/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 26 2016 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^3] / QPochhammer[ x]^2, {x, 0, n}]; (* Michael Somos, Nov 25 2019 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A) / eta(x + A)^2, n))}; /* Michael Somos, Nov 25 2019 */

Formula

G.f.: Product_{n>=1} (1 - x^(3*n))/(1 - x^n)^2.
a(n) ~ sqrt(5/3)*exp(sqrt(10*n)*Pi/3)/(12*n). - Vaclav Kotesovec, Nov 26 2016
Expansion of q^(-1/24) * eta(q^3) / eta(q)^2 in powers of q. - Michael Somos, Nov 25 2019
G.f.: 1/Product_{n > = 1} ( 1 - x^(n/gcd(n,k)) ) for k = 3. Cf. A000041 (k = 1), A015128 (k = 2), A298311 (k = 4) and A160461 (k = 5). - Peter Bala, Nov 17 2020

A284592 Square array read by antidiagonals: T(n,k) is the number of pairs of partitions of n and k respectively, such that the pair of partitions have no part in common.

Original entry on oeis.org

1, 1, 1, 2, 0, 2, 3, 1, 1, 3, 5, 1, 2, 1, 5, 7, 2, 3, 3, 2, 7, 11, 2, 5, 4, 5, 2, 11, 15, 4, 6, 7, 7, 6, 4, 15, 22, 4, 10, 8, 12, 8, 10, 4, 22, 30, 7, 12, 14, 14, 14, 14, 12, 7, 30, 42, 8, 18, 16, 24, 16, 24, 16, 18, 8, 42, 56, 12, 23, 25, 28, 28, 28, 28, 25, 23, 12, 56
Offset: 0

Views

Author

Peter Bala, Mar 30 2017

Keywords

Comments

Compare with A284593.

Examples

			Square array begins
  n\k|  0  1  2  3  4  5   6   7   8   9  10
- - - - - - - - - - - - - - - - - - - - - - -
  0  |  1  1  2  3  5  7  11  15  22  30  42: A000041
  1  |  1  0  1  1  2  2   4   4   7   8  12: A002865
  2  |  2  1  2  3  5  6  10  12  18  23  32
  3  |  3  1  3  4  7  8  14  16  25  31  44
  4  |  5  2  5  7 12 14  24  28  43  54  76
  5  |  7  2  6  8 14 16  28  31  49  60  85
  6  | 11  4 10 14 24 28  48  55  85 106 149
  7  | 15  4 12 16 28 31  55  60  95 115 163
  8  | 22  7 18 25 43 49  85  95 148 182 256
  9  | 30  8 23 31 54 60 106 115 182 220 311
  10 | 42 12 32 44 76 85 149 163 256 311 438
  ...
T(4,3) = 7: the 7 pairs of partitions of 4 and 3 with no parts in common are (4, 3), (4, 2 + 1), (4, 1 + 1 + 1), (2 + 2, 3), (2 + 2, 1 + 1 + 1), (2 + 1 + 1 , 3) and (1 + 1 + 1 + 1, 3).
		

Crossrefs

Cf. A000041 (row 0), A002865 (row 1), A015128 (antidiagonal sums), A284593.
Main diagonal gives A054440 or 2*A260669 (for n>0).

Programs

  • Maple
    #A284592 as a square array
    ser := taylor(taylor(mul(1 + x^j/(1 - x^j) + y^j/(1 - y^j), j = 1..10), x, 11), y, 11):
    convert(ser, polynom):
    s := convert(%, polynom):
    with(PolynomialTools):
    for n from 0 to 10 do CoefficientList(coeff(s, y, n), x) end do;
    # second Maple program:
    b:= proc(n, k, i) option remember; `if`(n=0 and
           (k=0 or i=1), 1, `if`(i<1, 0, b(n, k, i-1)+
           add(b(sort([n-i*j, k])[], i-1), j=1..n/i)+
           add(b(sort([n, k-i*j])[], i-1), j=1..k/i)))
        end:
    A:= (n, k)-> (l-> b(l[1], l[2]$2))(sort([n, k])):
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Apr 02 2017
  • Mathematica
    Table[Total@ Boole@ Map[! IntersectingQ @@ Map[Union, #] &, Tuples@ {IntegerPartitions@ #, IntegerPartitions@ k}] &[n - k], {n, 0, 11}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 02 2017 *)
    b[n_, k_, i_] := b[n, k, i] = If[n == 0 &&
         (k == 0 || i == 1), 1, If[i < 1, 0, b[n, k, i - 1] +
         Sum[b[Sequence @@ Sort[{n - i*j, k}], i - 1], {j, 1, n/i}] +
         Sum[b[Sequence @@ Sort[{n, k - i*j}], i - 1], {j, 1, k/i}]]];
    A[n_, k_] := Function [l, b[l[[1]], l[[2]], l[[2]]]][Sort[{n, k}]];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Jun 07 2021, after Alois P. Heinz *)

Formula

O.g.f. Product_{j >= 1} (1 + x^j/(1 - x^j) + y^j/(1 - y^j)) = Sum_{n,k >= 0} T(n,k)*x^n*y^k (see Wilf, Example 7).
Antidiagonal sums are A015128.

A285458 Expansion of Product_{k>=1} ((1 + x^k) / (1 - x^(4*k)))^k.

Original entry on oeis.org

1, 1, 2, 5, 9, 17, 30, 54, 94, 161, 269, 449, 740, 1200, 1930, 3083, 4877, 7650, 11919, 18444, 28363, 43341, 65848, 99523, 149654, 223901, 333448, 494427, 729996, 1073408, 1572264, 2294389, 3336191, 4834261, 6981727, 10050944, 14424665, 20639641, 29447118
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 19 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^(4*k)))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(1/12 + 3 * (13*Zeta(3))^(1/3) * n^(2/3) / 4) * (13*Zeta(3))^(7/36) / (2 * A * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962.

A288515 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of Product_{j>=1} ((1 + x^j)/(1 - x^j))^k.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 4, 0, 1, 6, 12, 8, 0, 1, 8, 24, 32, 14, 0, 1, 10, 40, 80, 76, 24, 0, 1, 12, 60, 160, 234, 168, 40, 0, 1, 14, 84, 280, 552, 624, 352, 64, 0, 1, 16, 112, 448, 1110, 1712, 1552, 704, 100, 0, 1, 18, 144, 672, 2004, 3912, 4896, 3648, 1356, 154, 0, 1, 20, 180, 960, 3346, 7896, 12600, 13120, 8184, 2532, 232, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 10 2017

Keywords

Examples

			Square array begins:
1,   1,    1,    1,     1,     1,  ...
0,   2,    4,    6,     8,    10,  ...
0,   4,   12,   24,    40,    60,  ...
0,   8,   32,   80,   160,   280,  ...
0,  14,   76,  234,   552,  1110,  ...
0,  24,  168,  624,  1712,  3913,  ...
		

Crossrefs

Columns k=0-24 give: A000007, A015128, A001934, A004404 (alternating values), A284286, A004406-A004425 (alternating values).
Rows n=0-2 give: A000012, A005843, A046092.
Main diagonal gives A270919.
Antidiagonal sums give A299108.

Programs

  • Julia
    # JacobiTheta4 is defined in A002448.
    A288515Column(k, len) = JacobiTheta4(len, -k)
    for k in 0:8 A288515Column(k, 8) |> println end # Peter Luschny, Mar 12 2018
  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[((1 + x^i)/(1 - x^i))^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[1/EllipticTheta[4, 0, x]^k, {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} ((1 + x^j)/(1 - x^j))^k.
G.f. of column k: 1/theta_4(x)^k, where theta_4() is the Jacobi theta function.
For asymptotics of column k see comment from Vaclav Kotesovec in A001934.

A303382 Expansion of Product_{n>=1} ((1 + 8*x^n)/(1 - 8*x^n))^(1/8).

Original entry on oeis.org

1, 2, 4, 50, 98, 1830, 4576, 83950, 236500, 4211766, 12903260, 222377926, 723722602, 12136867530, 41382435824, 678060771778, 2400028798290, 38546050682278, 140724756748476, 2220907298526934, 8323586858891766, 129340015891714962, 495838256186203600
Offset: 0

Views

Author

Seiichi Manyama, Apr 22 2018

Keywords

Crossrefs

Expansion of Product_{n>=1} ((1 + 2^b*x^n)/(1 - 2^b*x^n))^(1/(2^b)): A015128 (b=0), A303346 (b=1), A303360 (b=2), this sequence (b=3).
Cf. A303381.

Programs

  • Maple
    seq(coeff(series(mul(((1+8*x^k)/(1-8*x^k))^(1/8), k = 1..n), x, n+1), x, n), n=0..25); # Muniru A Asiru, Apr 23 2018
  • Mathematica
    nmax = 25; CoefficientList[Series[Product[((1 + 8*x^k)/(1 - 8*x^k))^(1/8), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 23 2018 *)
    nmax = 30; CoefficientList[Series[(-7*QPochhammer[-8, x] / (9*QPochhammer[8, x]))^(1/8), {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 23 2018 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, ((1+8*x^k)/(1-8*x^k))^(1/8)))

Formula

a(n) ~ c * 8^n / n^(7/8), where c = (QPochhammer[-1, 1/8] / QPochhammer[1/8])^(1/8) / Gamma(1/8) = 0.15003359366795844474467456149... - Vaclav Kotesovec, Apr 23 2018
Previous Showing 81-90 of 191 results. Next