A083099
a(n) = 2*a(n-1) + 6*a(n-2), a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 2, 10, 32, 124, 440, 1624, 5888, 21520, 78368, 285856, 1041920, 3798976, 13849472, 50492800, 184082432, 671121664, 2446737920, 8920205824, 32520839168, 118562913280, 432250861568, 1575879202816, 5745263575040
Offset: 0
Mario Catalani (mario.catalani(AT)unito.it), Apr 22 2003
- John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
The following sequences (and others) belong to the same family:
A000129,
A001333,
A002532,
A002533,
A002605,
A015518,
A015519,
A026150,
A046717,
A063727,
A083098,
A083099,
A083100,
A084057.
-
[n le 2 select n-1 else 2*Self(n-1) + 6*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 24 2018
-
A083099 := proc(n)
option remember;
if n <= 1 then
n;
else
2*procname(n-1)+6*procname(n-2) ;
end if;
end proc: # R. J. Mathar, Sep 23 2016
-
CoefficientList[Series[x/(1-2x-6x^2), {x, 0, 25}], x] (* Adapted for offset 0 by Vincenzo Librandi, Feb 07 2014 *)
Expand[Table[((1 + Sqrt[7])^n - (1 - Sqrt[7])^n)7/(14Sqrt[7]), {n, 0, 25}]] (* Zerinvary Lajos, Mar 22 2007 *)
LinearRecurrence[{2,6}, {0,1}, 25] (* Sture Sjöstedt, Dec 06 2011 *)
-
a(n)=([0,1; 6,2]^n*[0;1])[1,1] \\ Charles R Greathouse IV, May 10 2016
-
my(x='x+O('x^30)); concat([0], Vec(x/(1-2*x-6*x^2))) \\ G. C. Greubel, Jan 24 2018
-
[lucas_number1(n,2,-6) for n in range(0, 25)] # Zerinvary Lajos, Apr 22 2009
-
A083099=BinaryRecurrenceSequence(2,6,0,1)
[A083099(n) for n in range(41)] # G. C. Greubel, Jun 01 2023
A002533
a(n) = 2*a(n-1) + 5*a(n-2), with a(0) = a(1) = 1.
Original entry on oeis.org
1, 1, 7, 19, 73, 241, 847, 2899, 10033, 34561, 119287, 411379, 1419193, 4895281, 16886527, 58249459, 200931553, 693110401, 2390878567, 8247309139, 28449011113, 98134567921, 338514191407, 1167701222419, 4027973401873, 13894452915841, 47928772841047, 165329810261299
Offset: 0
- John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. Tarn, Approximations to certain square roots and the series of numbers connected therewith, Mathematical Questions and Solutions from the Educational Times, 1 (1916), 8-12.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Albert Tarn, Approximations to certain square roots and the series of numbers connected therewith [Annotated scanned copy]
- Index entries for linear recurrences with constant coefficients, signature (2,5).
The following sequences (and others) belong to the same family:
A001333,
A000129,
A026150,
A002605,
A046717,
A015518,
A084057,
A063727,
A002533,
A002532,
A083098,
A083099,
A083100,
A015519.
-
[(1/2)*Floor((1+Sqrt(6))^n+(1-Sqrt(6))^n): n in [0..30]]; // Vincenzo Librandi, Aug 15 2011
-
[n le 2 select 1 else 2*Self(n-1) + 5*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 08 2018
-
A002533:=(-1+z)/(-1+2*z+5*z**2); # conjectured by Simon Plouffe in his 1992 dissertation
-
f[n_] := Simplify[((1 + Sqrt[6])^n + (1 - Sqrt[6])^n)/2]; Array[f, 28, 0] (* Or *)
LinearRecurrence[{2, 5}, {1, 1}, 28] (* Or *)
Table[ MatrixPower[{{1, 2}, {3, 1}}, n][[1, 1]], {n, 0, 25}]
(* Robert G. Wilson v, Sep 18 2013 *)
-
a(n)=([0,1; 5,2]^n*[1;1])[1,1] \\ Charles R Greathouse IV, May 10 2016
-
x='x+O('x^30); Vec((1-x)/(1-2*x-5*x^2)) \\ G. C. Greubel, Jan 08 2018
-
[lucas_number2(n,2,-5)/2 for n in range(0, 21)] # Zerinvary Lajos, Apr 30 2009
A083098
a(n) = 2*a(n-1) + 6*a(n-2).
Original entry on oeis.org
1, 1, 8, 22, 92, 316, 1184, 4264, 15632, 56848, 207488, 756064, 2757056, 10050496, 36643328, 133589632, 487039232, 1775616256, 6473467904, 23600633344, 86042074112, 313687948288, 1143628341248, 4169384372224, 15200538791936
Offset: 0
Mario Catalani (mario.catalani(AT)unito.it), Apr 22 2003
- John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
The following sequences (and others) belong to the same family:
A001333,
A000129,
A026150,
A002605,
A046717,
A015518,
A084057,
A063727,
A002533,
A002532,
A083098,
A083099,
A083100,
A015519.
-
I:=[1,1]; [n le 2 select I[n] else 2*Self(n-1) + 6*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 08 2018
-
CoefficientList[Series[(1+6x)/(1-2x-6x^2), {x, 0, 25}], x]
LinearRecurrence[{2, 6}, {1, 1}, 25] (* Sture Sjöstedt, Dec 06 2011 *)
a[n_] := Simplify[((1 + Sqrt[7])^n + (1 - Sqrt[7])^n)/2]; Array[a, 25, 0] (* Robert G. Wilson v, Sep 18 2013 *)
-
x='x+O('x^30); Vec((1-x)/(1-2*x-6*x^2)) \\ G. C. Greubel, Jan 08 2018
-
[lucas_number2(n,2,-6)/2 for n in range(0, 25)] # Zerinvary Lajos, Apr 30 2009
A083100
a(n) = 2*a(n-1) + 7*a(n-2).
Original entry on oeis.org
1, 9, 25, 113, 401, 1593, 5993, 23137, 88225, 338409, 1294393, 4957649, 18976049, 72655641, 278143625, 1064876737, 4076758849, 15607654857, 59752621657, 228758827313, 875786006225, 3352883803641, 12836269650857, 49142725927201
Offset: 0
Mario Catalani (mario.catalani(AT)unito.it), Apr 23 2003
Essentially a duplicate of
A084058.
The following sequences (and others) belong to the same family:
A001333,
A000129,
A026150,
A002605,
A046717,
A015518,
A084057,
A063727,
A002533,
A002532,
A083098,
A083099,
A083100,
A015519.
-
I:=[1,1]; [n le 2 select I[n] else 2*Self(n-1) + 7*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 08 2018
-
CoefficientList[Series[(1 + 7 x)/(1 - 2 x - 7 x^2), {x, 0, 25}], x] (* Or *) a[n_] := Simplify[((1 + Sqrt[8])^n + (1 - Sqrt[8])^n)/2]; Array[a, 25, 0] (* Or *) LinearRecurrence[{2, 7}, {1, 1}, 28] (* Or *) Table[ MatrixPower[{{1, 2}, {4, 1}}, n][[1, 1]], {n, 0, 25}] (* Robert G. Wilson v, Sep 18 2013 *)
-
a(n)=([0,1; 7,2]^n*[1;9])[1,1] \\ Charles R Greathouse IV, Apr 06 2016
-
x='x+O('x^30); Vec((1+7*x)/(1-2*x-7*x^2)) \\ G. C. Greubel, Jan 08 2018
A207538
Triangle of coefficients of polynomials v(n,x) jointly generated with A207537; see Formula section.
Original entry on oeis.org
1, 2, 4, 1, 8, 4, 16, 12, 1, 32, 32, 6, 64, 80, 24, 1, 128, 192, 80, 8, 256, 448, 240, 40, 1, 512, 1024, 672, 160, 10, 1024, 2304, 1792, 560, 60, 1, 2048, 5120, 4608, 1792, 280, 12, 4096, 11264, 11520, 5376, 1120, 84, 1, 8192, 24576, 28160, 15360
Offset: 1
First seven rows:
1
2
4...1
8...4
16..12..1
32..32..6
64..80..24..1
(2, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, ...) begins:
1
2, 0
4, 1, 0
8, 4, 0, 0
16, 12, 1, 0, 0
32, 32, 6, 0, 0, 0
64, 80, 24, 1, 0, 0, 0
128, 192, 80, 8, 0, 0, 0, 0
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 80-83, 357-358.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x]
v[n_, x_] := u[n - 1, x] + v[n - 1, x]
Table[Factor[u[n, x]], {n, 1, z}]
Table[Factor[v[n, x]], {n, 1, z}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A207537, |A028297| *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A207538, |A133156| *)
t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, 2 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]}] // Flatten (* Zagros Lalo, Jul 31 2018 *)
t[n_, k_] := t[n, k] = 2^(n - 2 k) * (n - k)!/((n - 2 k)! k!) ; Table[t[n, k], {n, 0, 15}, {k, 0, Floor[n/2]} ] // Flatten (* Zagros Lalo, Jul 31 2018 *)
A081582
Pascal-(1,7,1) array.
Original entry on oeis.org
1, 1, 1, 1, 9, 1, 1, 17, 17, 1, 1, 25, 97, 25, 1, 1, 33, 241, 241, 33, 1, 1, 41, 449, 1161, 449, 41, 1, 1, 49, 721, 3297, 3297, 721, 49, 1, 1, 57, 1057, 7161, 14721, 7161, 1057, 57, 1, 1, 65, 1457, 13265, 44961, 44961, 13265, 1457, 65, 1, 1, 73, 1921, 22121, 108353, 192969, 108353, 22121, 1921, 73, 1
Offset: 0
Rows begin
1, 1, 1, 1, 1, ... A000012;
1, 9, 17, 25, 33, ... A017077;
1, 17, 97, 241, 449, ... A081593;
1, 25, 241, 1161, 3297, ...
1, 33, 449, 3297, 14721, ...
Triangle begins:
1;
1, 1;
1, 9, 1;
1, 17, 17, 1;
1, 25, 97, 25, 1;
1, 33, 241, 241, 33, 1;
1, 41, 449, 1161, 449, 41, 1;
1, 49, 721, 3297, 3297, 721, 49, 1;
1, 57, 1057, 7161, 14721, 7161, 1057, 57, 1;
Cf. Pascal (1,m,1) array:
A123562 (m = -3),
A098593 (m = -2),
A000012 (m = -1),
A007318 (m = 0),
A008288 (m = 1),
A081577 (m = 2),
A081578 (m = 3),
A081579 (m = 4),
A081580 (m = 5),
A081581 (m = 6),
A143683 (m = 8).
-
A081582:= func< n,k,q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
[A081582(n,k,7): k in [0..n], n in [0..12]]; // G. C. Greubel, May 26 2021
-
Table[ Hypergeometric2F1[-k, k-n, 1, 8], {n,0,10}, {k,0,n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
-
flatten([[hypergeometric([-k, k-n], [1], 8).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 26 2021
A202064
Triangle T(n,k), read by rows, given by (2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 2, 0, 3, 1, 0, 4, 4, 0, 0, 5, 10, 1, 0, 0, 6, 20, 6, 0, 0, 0, 7, 35, 21, 1, 0, 0, 0, 8, 56, 56, 8, 0, 0, 0, 0, 9, 84, 126, 36, 1, 0, 0, 0, 0, 10, 120, 252, 120, 10, 0, 0, 0, 0, 0, 11, 165, 462, 330, 55, 1, 0, 0, 0, 0, 0
Offset: 0
Triangle begins :
1
2, 0
3, 1, 0
4, 4, 0, 0
5, 10, 1, 0, 0
6, 20, 6, 0, 0, 0
7, 35, 21, 1, 0, 0, 0
8, 56, 56, 8, 0, 0, 0, 0
Last nonzero term in each row appears to be
A124625.
A034839 counts subsets by number of maximal runs, for anti-runs
A384893.
A116674 counts strict partitions by number of maximal runs, for anti-runs
A384905.
Cf.
A000045,
A000071,
A001629,
A010027,
A053538,
A208342,
A210034,
A245563,
A268193,
A384177,
A384890.
-
Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Length[Split[#,#2==#1+1&]]==k&]],{n,12},{k,n}] (* Gus Wiseman, Jul 07 2025 *)
A096980
Expansion of (1+3x)/(1-2x-7x^2).
Original entry on oeis.org
1, 5, 17, 69, 257, 997, 3793, 14565, 55681, 213317, 816401, 3126021, 11966849, 45815845, 175399633, 671510181, 2570817793, 9842206853, 37680138257, 144255724485, 552272416769, 2114334904933, 8094576727249, 30989497789029
Offset: 0
A189800
a(n) = 6*a(n-1) + 8*a(n-2), with a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 6, 44, 312, 2224, 15840, 112832, 803712, 5724928, 40779264, 290475008, 2069084160, 14738305024, 104982503424, 747801460736, 5326668791808, 37942424436736, 270267896954880, 1925146777223168, 13713023838978048, 97679317251653632, 695780094221746176
Offset: 0
Sequences of the form a(n) = c*a(n-1) + d*a(n-2), with a(0)=0, a(1)=1:
c/d...1.......2.......3.......4.......5.......6.......7.......8.......9......10
-
I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
-
LinearRecurrence[{6, 8}, {0, 1}, 50]
CoefficientList[Series[-(x/(-1+6 x+8 x^2)),{x,0,50}],x] (* Harvey P. Dale, Jul 26 2011 *)
-
a(n)=([0,1; 8,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
A084150
A Pell related sequence.
Original entry on oeis.org
0, 0, 1, 3, 14, 50, 199, 749, 2892, 11028, 42301, 161799, 619706, 2372006, 9081955, 34767953, 133109592, 509594856, 1950956857, 7469077707, 28594853414, 109473250778, 419110475455, 1604533706357, 6142840740900, 23517417426300
Offset: 0
-
[n le 3 select Floor((n-1)/2) else 3*Self(n-1) +5*Self(n-2) -7*Self(n-3): n in [1..41]]; // G. C. Greubel, Oct 11 2022
-
LinearRecurrence[{3,5,-7}, {0,0,1}, 41] (* G. C. Greubel, Oct 11 2022 *)
-
A084058 = BinaryRecurrenceSequence(2,7,1,1)
def A084150(n): return (A084058(n) - 1)/8
[A084150(n) for n in range(41)] # G. C. Greubel, Oct 11 2022
Comments