A180226
a(n) = 4*a(n-1) + 10*a(n-2), with a(1)=0 and a(2)=1.
Original entry on oeis.org
0, 1, 4, 26, 144, 836, 4784, 27496, 157824, 906256, 5203264, 29875616, 171535104, 984896576, 5654937344, 32468715136, 186424233984, 1070384087296, 6145778689024, 35286955629056, 202605609406464, 1163291993916416, 6679224069730304, 38349816218085376
Offset: 1
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015443,
A015447,
A030195,
A053404,
A057087,
A083858,
A085939,
A090017,
A091914,
A099012,
A180222.
-
I:=[0,1]; [n le 2 select I[n] else 4*Self(n-1) + 10*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018
-
Join[{a=0,b=1},Table[c=4*b+10*a;a=b;b=c,{n,100}]]
LinearRecurrence[{4,10}, {0,1}, 30] (* G. C. Greubel, Jan 16 2018 *)
-
x='x+O('x^30); concat([0], Vec(x^2/(1-4*x-10*x^2))) \\ G. C. Greubel, Jan 16 2018
A152187
a(n) = 3*a(n-1) + 5*a(n-2), with a(0)=1, a(1)=5.
Original entry on oeis.org
1, 5, 20, 85, 355, 1490, 6245, 26185, 109780, 460265, 1929695, 8090410, 33919705, 142211165, 596232020, 2499751885, 10480415755, 43940006690, 184222098845, 772366329985, 3238209484180, 13576460102465, 56920427728295
Offset: 0
A135030
Generalized Fibonacci numbers: a(n) = 6*a(n-1) + 2*a(n-2).
Original entry on oeis.org
0, 1, 6, 38, 240, 1516, 9576, 60488, 382080, 2413456, 15244896, 96296288, 608267520, 3842197696, 24269721216, 153302722688, 968355778560, 6116740116736, 38637152257536, 244056393778688, 1541612667187200
Offset: 0
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015535,
A015536,
A015537,
A015440,
A015441,
A015443,
A015444,
A015445,
A015447,
A015548,
A030195,
A053404,
A057087,
A057088,
A083858,
A085939,
A090017,
A091914,
A099012,
A180222,
A180226,
A180250.
-
[n le 2 select n-1 else 6*Self(n-1) + 2*Self(n-2): n in [1..35]]; // Vincenzo Librandi, Sep 18 2016
-
A:= gfun:-rectoproc({a(0) = 0, a(1) = 1, a(n) = 2*(3*a(n-1) + a(n-2))},a(n),remember):
seq(A(n),n=1..30); # Robert Israel, Sep 16 2014
-
Join[{a=0,b=1},Table[c=6*b+2*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
LinearRecurrence[{6,2},{0,1},30] (* or *) CoefficientList[Series[ -(x/(2x^2+6x-1)),{x,0,30}],x] (* Harvey P. Dale, Jun 20 2011 *)
-
a(n)=([0,1; 2,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
-
[lucas_number1(n,6,-2) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
A197189
a(n) = 3*a(n-1) + 5*a(n-2), with a(0)=1, a(1)=2.
Original entry on oeis.org
1, 2, 11, 43, 184, 767, 3221, 13498, 56599, 237287, 994856, 4171003, 17487289, 73316882, 307387091, 1288745683, 5403172504, 22653245927, 94975600301, 398193030538, 1669457093119, 6999336432047, 29345294761736, 123032566445443, 515824173145009, 2162635351662242
Offset: 0
-
[n le 2 select n else 3*Self(n-1)+5*Self(n-2): n in [1..26]];
-
a = {1, 2}; Do[AppendTo[a, 3 a[[-1]] + 5 a[[-2]]], {24}]; a (* Bruno Berselli, Dec 26 2012 *)
-
v=vector(26); v[1]=1; v[2]=2; for(i=3, #v, v[i]=3*v[i-1]+5*v[i-2]); v
A072263
a(n) = 3*a(n-1) + 5*a(n-2), with a(0)=2, a(1)=3.
Original entry on oeis.org
2, 3, 19, 72, 311, 1293, 5434, 22767, 95471, 400248, 1678099, 7035537, 29497106, 123669003, 518492539, 2173822632, 9113930591, 38210904933, 160202367754, 671661627927, 2815996722551, 11806298307288, 49498878534619, 207528127140297
Offset: 0
a(5)=5*b(4)+b(6): 1293=5*57+1008.
-
a:=[2,3];; for n in [3..40] do a[n]:=3*a[n-1]+5*a[n-2]; od; a; # G. C. Greubel, Jan 14 2020
-
I:=[2,3]; [n le 2 select I[n] else 3*Self(n-1) +5*Self(n-2): n in [1..40]]; // G. C. Greubel, Jan 14 2020
-
seq(coeff(series((2-3*x)/(1-3*x-5*x^2), x, n+1), x, n), n = 0..40); # G. C. Greubel, Jan 14 2020
-
LinearRecurrence[{3,5},{2,3},40] (* Harvey P. Dale, Nov 23 2018 *)
-
my(x='x+O('x^40)); Vec((2-3*x)/(1-3*x-5*x^2)) \\ G. C. Greubel, Jan 14 2020
-
[lucas_number2(n,3,-5) for n in range(0, 16)] # Zerinvary Lajos, Apr 30 2009
A072264
a(n) = 3*a(n-1) + 5*a(n-2), with a(0)=1, a(1)=1.
Original entry on oeis.org
1, 1, 8, 29, 127, 526, 2213, 9269, 38872, 162961, 683243, 2864534, 12009817, 50352121, 211105448, 885076949, 3710758087, 15557659006, 65226767453, 273468597389, 1146539629432, 4806961875241, 20153583772883, 84495560694854, 354254600948977, 1485241606321201
Offset: 0
a(5)=3*a(4)+5*a(3): 127=3*29+5*8=87+40.
-
a:=[1,1];; for n in [3..30] do a[n]:=3*a[n-1]+5*a[n-2]; od; a; # G. C. Greubel, Jan 14 2020
-
[n le 2 select 1 else 3*Self(n-1)+5*Self(n-2): n in [1..26]]; // Bruno Berselli, Oct 11 2011
-
seq(coeff(series((1-2*x)/(1-3*x-5*x^2), x, n+1), x, n), n = 0..30); # G. C. Greubel, Jan 14 2020
-
LinearRecurrence[{3,5},{1,1},30] (* Harvey P. Dale, Feb 17 2018 *)
-
my(x='x+O('x^30)); Vec((1-2*x)/(1-3*x-5*x^2)) \\ G. C. Greubel, Jan 14 2020
-
def A072264_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1-2*x)/(1-3*x-5*x^2) ).list()
A072264_list(30) # G. C. Greubel, Jan 14 2020
A180250
a(n) = 5*a(n-1) + 10*a(n-2), with a(1)=0 and a(2)=1.
Original entry on oeis.org
0, 1, 5, 35, 225, 1475, 9625, 62875, 410625, 2681875, 17515625, 114396875, 747140625, 4879671875, 31869765625, 208145546875, 1359425390625, 8878582421875, 57987166015625, 378721654296875, 2473479931640625, 16154616201171875, 105507880322265625
Offset: 1
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015535,
A015536,
A015537,
A015440,
A015441,
A015443,
A015444,
A015445,
A015447,
A030195,
A053404,
A057087,
A057088,
A083858,
A085939,
A090017,
A091914,
A099012,
A180222,
A180226.
-
[n le 2 select n-1 else 5*Self(n-1) +10*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2018
-
Join[{a=0,b=1},Table[c=5*b+10*a;a=b;b=c,{n,100}]]
LinearRecurrence[{5,10}, {0,1}, 30] (* G. C. Greubel, Jan 16 2018 *)
-
a(n)=([0,1;10,5]^(n-1))[1,2] \\ Charles R Greathouse IV, Oct 03 2016
-
my(x='x+O('x^30)); concat([0], Vec(x^2/(1-5*x-10*x^2))) \\ G. C. Greubel, Jan 16 2018
-
A180250= BinaryRecurrenceSequence(5,10,0,1)
[A180250(n-1) for n in range(1,41)] # G. C. Greubel, Jul 21 2023
A015551
Expansion of x/(1 - 6*x - 5*x^2).
Original entry on oeis.org
0, 1, 6, 41, 276, 1861, 12546, 84581, 570216, 3844201, 25916286, 174718721, 1177893756, 7940956141, 53535205626, 360916014461, 2433172114896, 16403612761681, 110587537144566, 745543286675801, 5026197405777636
Offset: 0
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015535,
A015536,
A015537,
A015440,
A015441,
A015443,
A015444,
A015445,
A015447,
A015548,
A030195,
A053404,
A057087,
A057088,
A057089,
A083858,
A085939,
A090017,
A091914,
A099012,
A135030,
A135032,
A180222,
A180226,
A180250.
-
I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
-
Join[{a=0,b=1},Table[c=6*b+5*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
CoefficientList[Series[x/(1-6x-5x^2),{x,0,20}],x] (* or *) LinearRecurrence[ {6,5},{0,1},30] (* Harvey P. Dale, Oct 30 2017 *)
-
a(n)=([0,1; 5,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
-
[lucas_number1(n,6,-5) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
A189800
a(n) = 6*a(n-1) + 8*a(n-2), with a(0)=0, a(1)=1.
Original entry on oeis.org
0, 1, 6, 44, 312, 2224, 15840, 112832, 803712, 5724928, 40779264, 290475008, 2069084160, 14738305024, 104982503424, 747801460736, 5326668791808, 37942424436736, 270267896954880, 1925146777223168, 13713023838978048, 97679317251653632, 695780094221746176
Offset: 0
Sequences of the form a(n) = c*a(n-1) + d*a(n-2), with a(0)=0, a(1)=1:
c/d...1.......2.......3.......4.......5.......6.......7.......8.......9......10
-
I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
-
LinearRecurrence[{6, 8}, {0, 1}, 50]
CoefficientList[Series[-(x/(-1+6 x+8 x^2)),{x,0,50}],x] (* Harvey P. Dale, Jul 26 2011 *)
-
a(n)=([0,1; 8,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016
A015541
Expansion of x/(1 - 5*x - 7*x^2).
Original entry on oeis.org
0, 1, 5, 32, 195, 1199, 7360, 45193, 277485, 1703776, 10461275, 64232807, 394392960, 2421594449, 14868722965, 91294775968, 560554940595, 3441838134751, 21133075257920, 129758243232857, 796722742969725, 4891921417478624, 30036666288181195
Offset: 0
Cf.
A001076,
A006190,
A007482,
A015520,
A015521,
A015523,
A015524,
A015525,
A015528,
A015529,
A015530,
A015531,
A015532,
A015533,
A015534,
A015535,
A015536,
A015537,
A015443,
A015447,
A030195,
A053404,
A057087,
A057088,
A083858,
A085939,
A090017,
A091914,
A099012,
A180222,
A180226.
-
[n le 2 select n-1 else 5*Self(n-1) + 7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 13 2012
-
Join[{a=0,b=1},Table[c=5*b+7*a;a=b;b=c,{n,100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
LinearRecurrence[{5, 7}, {0, 1}, 30] (* Vincenzo Librandi, Nov 13 2012 *)
-
x='x+O('x^30); concat([0], Vec(x/(1-5*x-7*x^2))) \\ G. C. Greubel, Jan 24 2018
-
[lucas_number1(n,5,-7) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
Comments