cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 146 results. Next

A207024 T(n,k) = Number of n X k 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 8, 13, 81, 90, 64, 10, 18, 169, 252, 168, 100, 12, 25, 324, 624, 558, 270, 144, 14, 34, 625, 1350, 1586, 1035, 396, 196, 16, 46, 1156, 3025, 3726, 3315, 1719, 546, 256, 18, 62, 2116, 6256, 9450, 8280, 6123, 2646, 720, 324, 20, 83, 3844
Offset: 1

Views

Author

R. H. Hardin, Feb 14 2012

Keywords

Comments

Table starts
..2...4...6....9....13....18.....25.....34......46......62.......83......111
..4..16..36...81...169...324....625...1156....2116....3844.....6889....12321
..6..36..90..252...624..1350...3025...6256...12788...25792....50630....99012
..8..64.168..558..1586..3726...9450..21318...47518..104470...220531...464202
.10.100.270.1035..3315..8280..23400..56814..136114..322834...725005..1627260
.12.144.396.1719..6123.16038..49925.129302..329498..836938..1984447..4716834
.14.196.546.2646.10374.28224..95900.263228..707756.1914436..4765030.11929281
.16.256.720.3852.16484.46260.170300.492932.1389476.3984244.10362550.27202659

Examples

			Some solutions for n=4, k=3
..1..0..0....0..1..0....0..0..1....1..0..1....0..0..1....1..1..0....1..1..1
..1..0..0....1..1..0....1..1..1....0..0..1....0..0..1....1..0..1....1..1..1
..1..0..0....1..1..0....0..0..1....0..0..1....0..0..1....1..0..1....0..1..0
..1..0..0....1..0..0....0..0..1....0..0..1....0..0..1....0..0..1....0..1..0
		

Crossrefs

Column 2 is A016742.
Column 3 is A152746.
Row 1 is A171861(n+1).

Formula

Empirical for column k:
k=1: a(n) = 2*n
k=2: a(n) = 4*n^2
k=3: a(n) = 12*n^2 - 6*n
k=4: a(n) = 6*n^3 + (27/2)*n^2 - (21/2)*n
k=5: a(n) = (13/6)*n^4 + 13*n^3 + (52/3)*n^2 - (39/2)*n
k=6: a(n) = (33/4)*n^4 + (45/2)*n^3 + (75/4)*n^2 - (63/2)*n
k=7: a(n) = (55/24)*n^5 + (75/4)*n^4 + (275/8)*n^3 + (75/4)*n^2 - (295/6)*n

A207068 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 1 and 0 1 0 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 8, 14, 81, 102, 64, 10, 21, 196, 288, 216, 100, 12, 31, 441, 896, 720, 390, 144, 14, 46, 961, 2499, 2688, 1485, 636, 196, 16, 68, 2116, 6634, 8799, 6398, 2709, 966, 256, 18, 100, 4624, 17848, 27063, 23856, 13132, 4536, 1392, 324, 20, 147
Offset: 1

Views

Author

R. H. Hardin Feb 14 2012

Keywords

Comments

Table starts
..2...4....6....9....14.....21.....31......46.......68......100.......147
..4..16...36...81...196....441....961....2116.....4624....10000.....21609
..6..36..102..288...896...2499...6634...17848....47192...122200....315315
..8..64..216..720..2688...8799..27063...84502...257584...762900...2246895
.10.100..390.1485..6398..23856..82739..291364...997288..3297100..10818024
.12.144..636.2709.13132..54684.210118..818892..3093184.11234900..40417797
.14.196..966.4536.24304.111426.468348.1992996..8204200.32364700.126207438
.16.256.1392.7128.41664.208026.947298.4356936.19360144.82226100.344542569

Examples

			Some solutions for n=4 k=3
..0..1..1....1..1..1....0..1..1....0..0..0....0..1..1....0..0..0....1..0..0
..1..1..0....1..1..0....1..0..0....1..0..0....0..1..1....0..1..1....0..0..0
..1..1..0....1..0..0....1..0..0....0..0..0....0..1..1....0..0..0....0..0..0
..1..0..0....1..0..0....1..0..0....0..0..0....0..1..1....0..0..0....0..0..0
		

Crossrefs

Column 2 is A016742
Column 3 is A086113
Row 1 is A038718(n+2)

Formula

Empirical for column k:
k=1: a(n) = 2*n
k=2: a(n) = 4*n^2
k=3: a(n) = 2*n^3 + 6*n^2 - 2*n
k=4: a(n) = (3/4)*n^4 + (15/2)*n^3 + (15/4)*n^2 - 3*n
k=5: a(n) = (7/30)*n^5 + 7*n^4 + (21/2)*n^3 - (56/15)*n
k=6: a(n) = (7/120)*n^6 + (147/40)*n^5 + (49/3)*n^4 + (91/8)*n^3 - (707/120)*n^2 - (91/20)*n
k=7: a(n) = (31/2520)*n^7 + (62/45)*n^6 + (4867/360)*n^5 + (2015/72)*n^4 + (1271/180)*n^3 - (4991/360)*n^2 - (713/140)*n

A207111 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 1 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 8, 13, 81, 98, 64, 10, 18, 169, 271, 200, 100, 12, 25, 324, 677, 643, 350, 144, 14, 34, 625, 1504, 1835, 1271, 556, 196, 16, 46, 1156, 3399, 4534, 4047, 2239, 826, 256, 18, 62, 2116, 7220, 11511, 10898, 7837, 3641, 1168, 324, 20, 83, 3844
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Table starts
..2...4....6....9....13....18.....25.....34......46......62.......83......111
..4..16...36...81...169...324....625...1156....2116....3844.....6889....12321
..6..36...98..271...677..1504...3399...7220...15184...31664....64749...132543
..8..64..200..643..1835..4534..11511..27012...62814..144676...325111...733469
.10.100..350.1271..4047.10898..30415..77326..194952..486102..1177409..2870021
.12.144..556.2239..7837.22714..68737.187054..505040.1346150..3472283..9030485
.14.196..826.3641.13863.42874.139341.402498.1153962.3259098..8878431.24420005
.16.256.1168.5581.22931.75198.260597.794118.2402578.7142988.20426983.59031673

Examples

			Some solutions for n=4 k=3
..0..1..0....0..0..1....1..0..0....1..0..0....1..1..1....0..1..0....1..1..0
..1..0..1....0..1..0....1..0..1....0..0..1....1..1..1....0..1..0....0..0..1
..0..0..1....0..0..1....1..0..1....1..0..1....1..1..1....0..1..0....0..1..0
..1..0..1....0..1..0....1..0..1....0..0..1....1..1..1....0..1..0....0..1..0
		

Crossrefs

Column 2 is A016742
Row 1 is A171861(n+1)
Row 2 is A207025

Formula

Empirical for column k:
k=1: a(n) = 2*n
k=2: a(n) = 4*n^2
k=3: a(n) = (4/3)*n^3 + 8*n^2 - (10/3)*n
k=4: a(n) = (5/12)*n^4 + (13/2)*n^3 + (115/12)*n^2 - (17/2)*n + 1
k=5: a(n) = (7/60)*n^5 + (8/3)*n^4 + (185/12)*n^3 + (19/3)*n^2 - (218/15)*n + 3
k=6: a(n) = (7/360)*n^6 + (77/120)*n^5 + (635/72)*n^4 + (623/24)*n^3 - (511/180)*n^2 - (103/5)*n + 6
k=7: a(n) = (1/280)*n^7 + (7/45)*n^6 + (47/15)*n^5 + (206/9)*n^4 + (4111/120)*n^3 - (1037/45)*n^2 - (4493/210)*n + 9

A207169 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 8, 13, 81, 90, 64, 10, 19, 169, 261, 168, 100, 12, 28, 361, 624, 603, 270, 144, 14, 41, 784, 1482, 1612, 1161, 396, 196, 16, 60, 1681, 3808, 3952, 3445, 1989, 546, 256, 18, 88, 3600, 9512, 11452, 8455, 6513, 3141, 720, 324, 20, 129, 7744
Offset: 1

Views

Author

R. H. Hardin Feb 15 2012

Keywords

Comments

Table starts
..2...4...6....9....13....19.....28.....41......60......88......129......189
..4..16..36...81...169...361....784...1681....3600....7744....16641....35721
..6..36..90..261...624..1482...3808...9512...23280...58080...144996...359100
..8..64.168..603..1612..3952..11452..32021...84300..231616...641775..1736910
.10.100.270.1161..3445..8455..26908..82861..228060..672760..2029041..5846337
.12.144.396.1989..6513.15789..54208.182081..515760.1608288..5222049.15774129
.14.196.546.3141.11284.26866..98224.357356.1032000.3365824.11680176.36617616
.16.256.720.4671.18304.42712.164668.645217.1888380.6392320.23581071.76187790

Examples

			Some solutions for n=4 k=3
..1..0..0....0..0..1....0..1..1....1..1..1....0..0..1....1..0..0....1..0..0
..1..0..0....0..1..1....0..0..1....1..1..1....0..0..1....1..1..0....0..0..1
..1..0..0....0..1..0....0..0..1....1..1..1....0..0..1....0..1..0....0..0..1
..1..0..0....0..1..0....0..0..1....1..1..1....0..0..1....0..1..0....0..0..1
		

Crossrefs

Column 2 is A016742
Column 3 is A152746
Row 1 is A000930(n+3)

Formula

Empirical for column k:
k=1: a(n) = 2*n
k=2: a(n) = 4*n^2
k=3: a(n) = 12*n^2 - 6*n
k=4: a(n) = 9*n^3 + 9*n - 9
k=5: a(n) = (13/4)*n^4 + (13/2)*n^3 + (117/4)*n^2 - 26*n
k=6: a(n) = (19/4)*n^4 + (95/2)*n^3 - (57/4)*n^2 - 19*n
k=7: a(n) = 35*n^4 + 42*n^3 + 7*n^2 - 84*n + 28
Empirical for rows:
n=1: a(k)=a(k-1)+a(k-3) for k>4
n=2: a(k)=a(k-1)+a(k-2)+3*a(k-3)+a(k-4)-a(k-5)-a(k-6) for k>7
n=3: a(k)=a(k-1)+9*a(k-3)+2*a(k-4)+2*a(k-5)-12*a(k-6)-8*a(k-7)+8*a(k-9) for k>11
n=4: a(k)=a(k-1)+13*a(k-3)+3*a(k-4)+3*a(k-5)-27*a(k-6)-18*a(k-7)+27*a(k-9) for k>11
n=5: a(k)=a(k-1)+17*a(k-3)+4*a(k-4)+4*a(k-5)-48*a(k-6)-32*a(k-7)+64*a(k-9) for k>11
n=6: a(k)=a(k-1)+21*a(k-3)+5*a(k-4)+5*a(k-5)-75*a(k-6)-50*a(k-7)+125*a(k-9) for k>11
n=7: a(k)=a(k-1)+25*a(k-3)+6*a(k-4)+6*a(k-5)-108*a(k-6)-72*a(k-7)+216*a(k-9) for k>11
n=8: a(k)=a(k-1)+29*a(k-3)+7*a(k-4)+7*a(k-5)-147*a(k-6)-98*a(k-7)+343*a(k-9) for k>11
n=9: a(k)=a(k-1)+33*a(k-3)+8*a(k-4)+8*a(k-5)-192*a(k-6)-128*a(k-7)+512*a(k-9) for k>11
n=10: a(k)=a(k-1)+37*a(k-3)+9*a(k-4)+9*a(k-5)-243*a(k-6)-162*a(k-7)+729*a(k-9) for k>11
n=11: a(k)=a(k-1)+41*a(k-3)+10*a(k-4)+10*a(k-5)-300*a(k-6)-200*a(k-7)+1000*a(k-9) for k>11
n=12: a(k)=a(k-1)+45*a(k-3)+11*a(k-4)+11*a(k-5)-363*a(k-6)-242*a(k-7)+1331*a(k-9) for k>11
n=13: a(k)=a(k-1)+49*a(k-3)+12*a(k-4)+12*a(k-5)-432*a(k-6)-288*a(k-7)+1728*a(k-9) for k>11
n=14: a(k)=a(k-1)+53*a(k-3)+13*a(k-4)+13*a(k-5)-507*a(k-6)-338*a(k-7)+2197*a(k-9) for k>11
n=15: a(k)=a(k-1)+57*a(k-3)+14*a(k-4)+14*a(k-5)-588*a(k-6)-392*a(k-7)+2744*a(k-9) for k>11
apparently a(k)=a(k-1)+(4*n-3)*a(k-3)+(n-1)*a(k-4)+(n-1)*a(k-5)-3*(n-1)^2*a(k-6)-2*(n-1)^2*a(k-7)+(n-1)^3*a(k-9) for n>2 and k>11

A086113 Number of 3 X n (0,1) matrices such that each row and each column is nondecreasing or nonincreasing.

Original entry on oeis.org

6, 36, 102, 216, 390, 636, 966, 1392, 1926, 2580, 3366, 4296, 5382, 6636, 8070, 9696, 11526, 13572, 15846, 18360, 21126, 24156, 27462, 31056, 34950, 39156, 43686, 48552, 53766, 59340, 65286, 71616, 78342, 85476, 93030, 101016, 109446, 118332
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[6, 36, 102, 216]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 24 2012
  • Mathematica
    CoefficientList[Series[6*(1+2x-x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 24 2012 *)

Formula

a(n) = 2*n*(n^2 + 3*n - 1) = 2*n*A014209(n). More generally, number of m X n (0, 1) matrices such that each row and each column is increasing or decreasing is 2*n*(2*binomial(n+m-1, n)-m) = 2*m*(2*binomial(m+n-1, m)-n).
G.f.: 6*x*(1 + 2*x - x^2)/(1-x)^4. - Vincenzo Librandi, Jun 24 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 24 2012

A195322 a(n) = 20*n^2.

Original entry on oeis.org

0, 20, 80, 180, 320, 500, 720, 980, 1280, 1620, 2000, 2420, 2880, 3380, 3920, 4500, 5120, 5780, 6480, 7220, 8000, 8820, 9680, 10580, 11520, 12500, 13520, 14580, 15680, 16820, 18000, 19220, 20480, 21780, 23120, 24500, 25920, 27380, 28880, 30420, 32000, 33620, 35280
Offset: 0

Views

Author

Omar E. Pol, Sep 16 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 20, ..., in the square spiral whose vertices are the generalized dodecagonal numbers A195162. Semiaxis opposite to A195317 in the same spiral.
a(n) is the sum of all the integers less than 10*n which are not multiple of 2 or 5. a(2) = (1 + 3 + 7 + 9) + (11 + 13 + 17 + 19) = 20 + 60 = 80 = 20 * 2^2. (Link Crux Mathematicorum). - Bernard Schott, May 15 2017
Number of terms less than 10^k (k=0, 1, 2, ...): 1, 1, 3, 8, 23, 71, 224, 708, 2237, 7072, 22361, 70711, ... - Muniru A Asiru, Feb 01 2018

Examples

			From _Muniru A Asiru_, Feb 01 2018: (Start)
n=0, a(0) = 20*0^2 = 0.
n=1, a(1) = 20*1^2 = 20.
n=1, a(2) = 20*2^2 = 80.
n=1, a(3) = 20*3^2 = 180.
n=1, a(4) = 20*4^2 = 320.
...
(End)
		

Crossrefs

Programs

Formula

a(n) = 20*A000290(n) = 10*A001105(n) = 5*A016742(n) = 4*A033429(n) = 2*A033583(n).
a(0)=0, a(1)=20, a(2)=80; for n > 2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jan 18 2013
a(n) = A010014(n) - A005899(n) for n > 0. - R. J. Cano, Sep 29 2015
From Elmo R. Oliveira, Nov 30 2024: (Start)
G.f.: 20*x*(1 + x)/(1-x)^3.
E.g.f.: 20*x*(1 + x)*exp(x).
a(n) = n*A008602(n) = A195148(2*n). (End)

A207254 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 1 and 1 0 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 8, 36, 36, 10, 10, 64, 102, 100, 16, 12, 100, 216, 370, 256, 26, 14, 144, 390, 940, 1232, 676, 42, 16, 196, 636, 1950, 3776, 4238, 1764, 68, 18, 256, 966, 3560, 9072, 15652, 14406, 4624, 110, 20, 324, 1392, 5950, 18688, 43498, 64176, 49164
Offset: 1

Views

Author

R. H. Hardin Feb 16 2012

Keywords

Comments

Table starts
..2....4.....6......8.....10......12......14.......16.......18.......20
..4...16....36.....64....100.....144.....196......256......324......400
..6...36...102....216....390.....636.....966.....1392.....1926.....2580
.10..100...370....940...1950....3560....5950.....9320....13890....19900
.16..256..1232...3776...9072...18688...34608....59264....95568...146944
.26..676..4238..15652..43498..101036..207298...388232...677898..1119716
.42.1764.14406..64176.206514..541380.1231650..2524704..4777290..8483748
.68.4624.49164.263976.982940.2906592.7328836.16436824.33693660.64313720

Examples

			Some solutions for n=4 k=3
..1..1..0....0..0..0....1..0..0....0..0..0....1..1..1....1..0..0....1..1..1
..1..0..0....0..0..0....0..0..0....0..1..1....1..1..1....1..0..0....1..1..1
..1..0..0....1..1..1....0..0..0....1..1..1....0..1..0....1..0..0....1..1..1
..0..1..1....1..1..1....0..1..1....1..0..0....0..1..0....1..0..0....1..1..1
		

Crossrefs

Column 1 is A006355(n+2)
Column 2 is A206981
Row 2 is A016742
Row 3 is A086113

Formula

Empirical for row n:
n=1: a(k) = 2*k
n=2: a(k) = 4*k^2
n=3: a(k) = 2*k^3 + 6*k^2 - 2*k
n=4: a(k) = (5/6)*k^4 + (35/3)*k^3 - (5/6)*k^2 - (5/3)*k
n=5: a(k) = (4/15)*k^5 + (32/3)*k^4 + (44/3)*k^3 - (32/3)*k^2 + (16/15)*k
n=6: a(k) = (13/180)*k^6 + (143/20)*k^5 + (1235/36)*k^4 - (39/4)*k^3 - (377/45)*k^2 + (13/5)*k
n=7: a(k) = (1/60)*k^7 + (77/20)*k^6 + (2527/60)*k^5 + (119/4)*k^4 - (644/15)*k^3 + (42/5)*k^2 + (4/5)*k

A207453 T(n,k) = Number of n X k 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 10, 36, 36, 8, 16, 100, 90, 64, 10, 26, 256, 330, 168, 100, 12, 42, 676, 1008, 760, 270, 144, 14, 68, 1764, 3354, 2560, 1450, 396, 196, 16, 110, 4624, 10710, 10088, 5200, 2460, 546, 256, 18, 178, 12100, 34884, 36456, 23530, 9216, 3850, 720
Offset: 1

Views

Author

R. H. Hardin, Feb 17 2012

Keywords

Comments

Table starts
..2...4...6...10....16.....26.....42......68......110......178.......288
..4..16..36..100...256....676...1764....4624....12100....31684.....82944
..6..36..90..330..1008...3354..10710...34884...112530...364722...1179360
..8..64.168..760..2560..10088..36456..138176...509960..1910296...7096320
.10.100.270.1450..5200..23530..92610..396100..1610950..6754210..27799200
.12.144.396.2460..9216..46956.196812..932688..4086060.18819228..83939328
.14.196.546.3850.14896..84266.370734.1922564..8935850.44655394.212625504
.16.256.720.5680.22528.139984.640080.3599104.17556880.94358512.474439680

Examples

			Some solutions for n=5, k=3
..1..0..1....1..1..0....1..1..1....0..1..1....0..1..0....0..1..0....0..1..1
..1..0..1....1..0..0....0..1..1....0..1..1....0..1..1....1..0..0....1..0..1
..1..0..1....1..0..0....0..1..0....0..1..0....0..1..1....1..0..0....1..0..1
..1..0..1....1..0..0....0..1..0....0..1..0....0..1..0....1..0..0....1..0..1
..1..0..0....1..0..0....0..1..0....0..1..0....0..1..0....1..0..0....1..0..1
		

Crossrefs

Column 2 is A016742.
Column 3 is A152746.
Row 1 is A006355(n+2).
Row 2 is A206981.

Formula

Empirical for column k:
k=1: a(n) = 2*n;
k=2: a(n) = 4*n^2;
k=3: a(n) = 12*n^2 - 6*n;
k=4: a(n) = 10*n^3 + 10*n^2 - 10*n;
k=5: a(n) = 48*n^3 - 32*n^2;
k=6: a(n) = 26*n^4 + 78*n^3 - 104*n^2 + 26*n;
k=7: a(n) = 168*n^4 - 84*n^3 - 84*n^2 + 42*n;
k=8: a(n) = 68*n^5 + 408*n^4 - 612*n^3 + 204*n^2;
k=9: a(n) = 550*n^5 - 990*n^3 + 660*n^2 - 110*n;
k=10: a(n) = 178*n^6 + 1780*n^5 - 2670*n^4 + 534*n^3 + 534*n^2 - 178*n;
k=11: a(n) = 1728*n^6 + 1440*n^5 - 6912*n^4 + 5184*n^3 - 1152*n^2;
k=12: a(n) = 466*n^7 + 6990*n^6 - 9320*n^5 - 2796*n^4 + 8388*n^3 - 3728*n^2 + 466*n;
k=13: a(n) = 5278*n^7 + 10556*n^6 - 36946*n^5 + 27144*n^4 - 3016*n^3 - 3016*n^2 + 754*n;
k=14: a(n) = 1220*n^8 + 25620*n^7 - 25620*n^6 - 42700*n^5 + 73200*n^4 - 36600*n^3 + 6100*n^2;
k=15: a(n) = 15792*n^8 + 55272*n^7 - 165816*n^6 + 98700*n^5 + 39480*n^4 - 59220*n^3 + 19740*n^2 - 1974*n.
Empirical for row n:
n=1: a(k)=a(k-1)+a(k-2);
n=2: a(k)=2*a(k-1)+2*a(k-2)-a(k-3);
n=3: a(k)=a(k-1)+7*a(k-2)+2*a(k-3)-4*a(k-4);
n=4: a(k)=a(k-1)+10*a(k-2)+3*a(k-3)-9*a(k-4);
n=5: a(k)=a(k-1)+13*a(k-2)+4*a(k-3)-16*a(k-4);
n=6: a(k)=a(k-1)+16*a(k-2)+5*a(k-3)-25*a(k-4);
n=7: a(k)=a(k-1)+19*a(k-2)+6*a(k-3)-36*a(k-4);
apparently for row n>2: a(k)=a(k-1)+(3*n-2)*a(k-2)+(n-1)*a(k-3)+(n-1)^2*a(k-4).

A082108 a(n) = 4*n^2 + 6*n + 1.

Original entry on oeis.org

1, 11, 29, 55, 89, 131, 181, 239, 305, 379, 461, 551, 649, 755, 869, 991, 1121, 1259, 1405, 1559, 1721, 1891, 2069, 2255, 2449, 2651, 2861, 3079, 3305, 3539, 3781, 4031, 4289, 4555, 4829, 5111, 5401, 5699, 6005, 6319, 6641, 6971, 7309, 7655, 8009, 8371
Offset: 0

Views

Author

Paul Barry, Apr 03 2003

Keywords

Comments

a(n) is the sum of the numerator and denominator of (n+1)/(2*n) + (n+2)/(2*(n+1)); all fractions are reduced and n > 0. - J. M. Bergot, Jun 14 2017

Crossrefs

Programs

  • Magma
    [4*n^2+6*n+1: n in [0..60]]; // G. C. Greubel, Dec 22 2022
    
  • Mathematica
    (* Programs from Michael De Vlieger, Jun 15 2017 *)
    Table[4n^2 +6n +1, {n,0,50}]
    LinearRecurrence[{3,-3,1}, {1,11,29}, 51]
    CoefficientList[Series[(1+8*x-x^2)/(1-x)^3, {x,0,50}], x] (* End *)
  • PARI
    a(n)=4*n^2+6*n+1 \\ Charles R Greathouse IV, Oct 07 2015
    
  • SageMath
    [4*n^2+6*n+1 for n in range(61)] # G. C. Greubel, Dec 22 2022

Formula

a(n) = a(n-1) + 8*n + 2. - Vincenzo Librandi, Aug 08 2010
From Michael De Vlieger, Jun 15 2017: (Start)
G.f.: (1 + 8*x - x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
a(n) = A016742(n) + A008588(n) + 1. - Felix Fröhlich, Jun 16 2017
Sum_{k=1..n} a(k-1)/(2*k)! = 1 - 1/(2*n)!. - Robert Israel, Jul 19 2017
E.g.f.: (1 + 10*x + 4*x^2)*exp(x). - G. C. Greubel, Dec 22 2022

Extensions

Incorrect formula and useless examples deleted by R. J. Mathar, Aug 31 2010

A166464 a(n) = (3 + 2*n + 6*n^2 + 4*n^3)/3.

Original entry on oeis.org

1, 5, 21, 57, 121, 221, 365, 561, 817, 1141, 1541, 2025, 2601, 3277, 4061, 4961, 5985, 7141, 8437, 9881, 11481, 13245, 15181, 17297, 19601, 22101, 24805, 27721, 30857, 34221, 37821, 41665, 45761, 50117, 54741, 59641, 64825, 70301, 76077, 82161, 88561, 95285, 102341, 109737, 117481, 125581
Offset: 0

Views

Author

Paul Curtz, Oct 14 2009

Keywords

Comments

Atomic number of first transition metal of period 2n (n>3) or of the element after n-th alkaline earth metal. This can be calculated by finding the sum of the first n even squares plus 1. - Natan Arie Consigli, Jul 03 2016

References

  • JANET,Charles, La structure du Noyau de l'atome,consideree dans la Classification periodique,des elements chimiques,1927 (Novembre),N. 2,BEAUVAIS,67 pages,3 leaflets.

Crossrefs

Programs

  • Magma
    [(3+2*n+6*n^2+4*n^3)/3: n in [0..60]]; // G. C. Greubel, Jul 27 2024
    
  • Mathematica
    Table[(3+2*n+6*n^2+4*n^3)/3, {n,0,60}] (* G. C. Greubel, May 15 2016 *)
  • PARI
    a(n)=(3+2*n+6*n^2+4*n^3)/3 \\ Charles R Greathouse IV, Oct 07 2015
    
  • SageMath
    [(3+2*n+6*n^2+4*n^3)//3 for n in range(61)] # G. C. Greubel, Jul 27 2024

Formula

a(n) - a(n-1) = 4*(n+1)^2 = A016742(n+1).
a(n) - 2*a(n-1) + a(n-2) = -4 + 8*n = A017113(n+1).
a(n) - 3*a(n-1) + 3*a(n-2) - a(n-3) = 8 = A010731(n).
a(n) - 4*a(n-1) + 6*a(n-2) - 4*a(n-3) + a(n-4) = 0.
Binomial transform of quasi-finite sequence 1,4,12,8,0,(0 continued).
G.f.: (1+x+7*x^2-x^3)/(1-x)^4. - R. J. Mathar, Feb 15 2010
From Natan Arie Consigli, Jul 03 2016: (Start)
a(n) = A018227(2*n) + 3.
a(n) = A002492(n) + 1. (End)
E.g.f.: (1/3)*(3 + 12*x + 18*x^2 + 4*x^3)*exp(x). - G. C. Greubel, Jul 27 2024

Extensions

Edited by N. J. A. Sloane, Oct 17 2009
More terms a(11)-a(35) from Vincenzo Librandi, Oct 17 2009
Previous Showing 51-60 of 146 results. Next