cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A059100 a(n) = n^2 + 2.

Original entry on oeis.org

2, 3, 6, 11, 18, 27, 38, 51, 66, 83, 102, 123, 146, 171, 198, 227, 258, 291, 326, 363, 402, 443, 486, 531, 578, 627, 678, 731, 786, 843, 902, 963, 1026, 1091, 1158, 1227, 1298, 1371, 1446, 1523, 1602, 1683, 1766, 1851, 1938, 2027, 2118, 2211, 2306, 2403, 2502, 2603
Offset: 0

Views

Author

Henry Bottomley, Feb 13 2001

Keywords

Comments

Let s(n) = Sum_{k>=1} 1/n^(2^k). Then I conjecture that the maximum element in the continued fraction for s(n) is n^2 + 2. - Benoit Cloitre, Aug 15 2002
Binomial transformation yields A081908, with A081908(0)=1 dropped. - R. J. Mathar, Oct 05 2008
1/a(n) = R(n)/r with R(n) the n-th radius of the Pappus chain of the symmetric arbelos with semicircle radii r, r1 = r/2 = r2. See the MathWorld link for Pappus chain (there are two of them, a left and a right one. In this case these two chains are congruent). - Wolfdieter Lang, Mar 01 2013
a(n) is the number of election results for an election with n+2 candidates, say C1, C2, ..., and C(n+2), and with only two voters (each casting a single vote) that have C1 and C2 receiving the same number of votes. See link below. - Dennis P. Walsh, May 08 2013
This sequence gives the set of values such that for sequences b(k+1) = a(n)*b(k) - b(k-1), with initial values b(0) = 2, b(1) = a(n), all such sequences are invariant under this transformation: b(k) = (b(j+k) + b(j-k))/b(j), except where b(j) = 0, for all integer values of j and k, including negative values. Examples are: at n=0, b(k) = 2 for all k; at n=1, b(k) = A005248; at n=2, b(k) = 2*A001541; at n=3, b(k)= A057076; at n=4, b(k) = 2*A023039. This b(k) family are also the transformation results for all related b'(k) (i.e., those with different initial values) including non-integer values. Further, these b(k) are also the bisections of the transformations of sequences of the form G(k+1) = n * G(k) + G(k-1), and those bisections are invariant for all initial values of g(0) and g(1), including non-integer values. For n = 1 this g(k) family includes Fibonacci and Lucas, where the invariant bisection is b(k) = A005248. The applicable bisection for this transformation of g(k) is for the odd values of k, and applies for all n. Also see A000032 for a related family of sequences. - Richard R. Forberg, Nov 22 2014
Also the number of maximum matchings in the n-gear graph. - Eric W. Weisstein, Dec 31 2017
Also the Wiener index of the n-dipyramidal graph. - Eric W. Weisstein, Jun 14 2018
Numbers of the form n^2+2 have no factors that are congruent to 7 (mod 8). - Gordon E. Michaels, Sep 12 2019
For n >= 1, the continued fraction expansion of sqrt(a(n)) is [n; {n, 2n}]. - Magus K. Chu, Sep 10 2022

Examples

			For n = 2, a(2) = 6 since there are 6 election results in a 4-candidate, 2-voter election that have candidates c1 and c2 tied. Letting <i,j> denote voter 1 voting for candidate i and voter 2 voting for candidate j, the six election results are <1,2>, <2,1>, <3,3>, <3,4>, <4,3>, and <4,4>. - _Dennis P. Walsh_, May 08 2013
		

Crossrefs

Apart from initial terms, same as A010000.
2nd row/column of A295707.

Programs

Formula

G.f.: (2 - 3*x + 3*x^2)/(1 - x)^3. - R. J. Mathar, Oct 05 2008
a(n) = ((n - 2)^2 + 2*(n + 1)^2)/3. - Reinhard Zumkeller, Feb 13 2009
a(n) = A000196(A156798(n) - A000290(n)). - Reinhard Zumkeller, Feb 16 2009
a(n) = 2*n + a(n-1) - 1 with a(0) = 2. - Vincenzo Librandi, Aug 07 2010
a(n+3) = (A166464(n+5) - A166464(n))/20. - Paul Curtz, Nov 07 2012
From Paul Curtz, Nov 07 2012: (Start)
a(3*n) mod 9 = 2.
a(3*n+1) = 3*A056109(n).
a(3*n+2) = 3*A056105(n+1). (End)
Sum_{n >= 1} 1/a(n) = Pi * coth(sqrt(2)*Pi) / 2^(3/2) - 1/4. - Vaclav Kotesovec, May 01 2018
From Amiram Eldar, Jan 29 2021: (Start)
Sum_{n>=0} (-1)^n/a(n) = (1 + sqrt(2)*Pi*(csch(sqrt(2)*Pi)))/4.
Product_{n>=0} (1 + 1/a(n)) = sqrt(3/2)*csch(sqrt(2)*Pi)*sinh(sqrt(3)*Pi).
Product_{n>=0} (1 - 1/a(n)) = csch(sqrt(2)*Pi)*sinh(Pi)/sqrt(2). (End)
E.g.f.: exp(x)*(2 + x + x^2). - Stefano Spezia, Aug 07 2024

A002492 Sum of the first n even squares: 2*n*(n+1)*(2*n+1)/3.

Original entry on oeis.org

0, 4, 20, 56, 120, 220, 364, 560, 816, 1140, 1540, 2024, 2600, 3276, 4060, 4960, 5984, 7140, 8436, 9880, 11480, 13244, 15180, 17296, 19600, 22100, 24804, 27720, 30856, 34220, 37820, 41664, 45760, 50116, 54740, 59640, 64824, 70300, 76076, 82160
Offset: 0

Views

Author

Keywords

Comments

Total number of possible bishop moves on an n+1 X n+1 chessboard, if the bishop is placed anywhere. E.g., on a 3 X 3-Board: bishop has 8 X 2 moves and 1 X 4 moves, so a(2)=20. - Ulrich Schimke (ulrschimke(AT)aol.com)
Let M_n denote the n X n matrix M_n(i,j)=(i+j)^2; then the characteristic polynomial of M_n is x^n - a(n)x^(n-1) - .... - Michael Somos, Nov 14 2002
Partial sums of A016742. - Lekraj Beedassy, Jun 19 2004
0,4,20,56,120 gives the number of electrons in closed shells in the double shell periodic system of elements. This is a new interpretation of the periodic system of the elements. The factor 4 in the formula 4*n(n+1)(2n+1)/6 plays a significant role, since it designates the degeneracy of electronic states in this system. Closed shells with more than 120 electrons are not expected to exist. - Karl-Dietrich Neubert (kdn(AT)neubert.net)
Inverse binomial transform of A240434. - Wesley Ivan Hurt, Apr 13 2014
Atomic number of alkaline-earth metals of period 2n. - Natan Arie Consigli, Jul 03 2016
a(n) are the negative cubic coefficients in the expansion of sin(kx) into powers of sin(x) for the odd k: sin(kx) = k sin(x) - c(k) sin^3(x) + O(sin^5(x)); a(n) = c(2n+1) = A000292(2n). - Mathias Zechmeister, Jul 24 2022
Also the number of distinct series-parallel networks under series-parallel reduction on three unlabeled edges of n element kinds. - Michael R. Hayashi, Aug 02 2023

References

  • A. O. Barut, Group Structure of the Periodic System, in Wybourne, Ed., The Structure of Matter, University of Canterbury Press, Christchurch, 1972, p. 126.
  • Edward G. Mazur, Graphic Representation of the Periodic System during One Hundred Years, University of Alabama Press, Alabama, 1974.
  • W. Permans and J. Kemperman, "Nummeringspribleem van S. Dockx, Mathematisch Centrum. Amsterdam," Rapport ZW; 1949-005, 4 leaves, 19.8 X 34 cm.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A033586 (King), A035005 (Queen), A035006 (Rook), A035008 (Knight) and A049450 (Pawn).

Programs

  • Magma
    [2*n*(n+1)*(2*n+1)/3: n in [0..40]]; // Vincenzo Librandi, Jun 16 2011
  • Maple
    A002492:=n->2*n*(n+1)*(2*n+1)/3; seq(A002492(n), n=0..50); # Wesley Ivan Hurt, Apr 04 2014
  • Mathematica
    Table[2n(n+1)(2n+1)/3, {n,0,40}] (* or *) Binomial[2*Range[0,40]+2,3] (* or *) LinearRecurrence[{4,-6,4,-1}, {0,4,20,56},40] (* Harvey P. Dale, Aug 15 2012 *)
    Accumulate[(2*Range[0,40])^2] (* Harvey P. Dale, Jun 04 2019 *)
  • PARI
    a(n)=2*n*(n+1)*(2*n+1)/3
    

Formula

G.f.: 4*x*(1+x)/(1-x)^4. - Simon Plouffe in his 1992 dissertation
a(-1-n) = -a(n).
a(n) = 4*A000330(n) = 2*A006331(n) = A000292(2*n).
a(n) = (-1)^(n+1)*A053120(2*n+1,3) (fourth unsigned column of Chebyshev T-triangle, zeros omitted).
a(n) = binomial(2*n+2, 3). - Lekraj Beedassy, Jun 19 2004
A035005(n+1) = a(n) + A035006(n+1) since Queen = Bishop + Rook. - Johannes W. Meijer, Feb 04 2010
a(n) - a(n-1) = 4*n^2. - Joerg Arndt, Jun 16 2011
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>3. - Harvey P. Dale, Aug 15 2012
a(n) = Sum_{k=0..3} C(n-2+k,n-2)*C(n+3-k,n), for n>2. - J. M. Bergot, Jun 14 2014
a(n) = 2*A006331(n). - R. J. Mathar, May 28 2016
From Natan Arie Consigli Jul 03 2016: (Start)
a(n) = A166464(n) - 1.
a(n) = A168380(2*n). (End)
a(n) = Sum_{i=0..n} A005408(i)*A005408(i-1)+1 with A005408(-1):=-1. - Bruno Berselli, Jan 09 2017
a(n) = A002412(n) + A016061(n). - Bruce J. Nicholson, Nov 12 2017
From Amiram Eldar, Jan 04 2022: (Start)
Sum_{n>=1} 1/a(n) = 9/2 - 6*log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*Pi/2 - 9/2. (End)
a(n) = A081277(3, n-1) = (1+2*n)*binomial(n+1, n-2)*2^2/(n-1) for n > 0. - Mathias Zechmeister, Jul 26 2022
E.g.f.: 2*exp(x)*x*(6 + 9*x + 2*x^2)/3. - Stefano Spezia, Jul 31 2022

Extensions

Minor errors corrected and edited by Johannes W. Meijer, Feb 04 2010
Title modified by Charles R Greathouse IV at the suggestion of J. M. Bergot, Apr 05 2014

A166911 a(n) = (9 + 14*n + 12*n^2 + 4*n^3)/3.

Original entry on oeis.org

3, 13, 39, 89, 171, 293, 463, 689, 979, 1341, 1783, 2313, 2939, 3669, 4511, 5473, 6563, 7789, 9159, 10681, 12363, 14213, 16239, 18449, 20851, 23453, 26263, 29289, 32539, 36021, 39743, 43713, 47939, 52429, 57191, 62233, 67563, 73189, 79119, 85361, 91923
Offset: 0

Views

Author

Paul Curtz, Oct 23 2009

Keywords

Comments

The inverse binomial transform yields the quasi-finite sequence 3,10,16,8,0,.. (0 continued).
These are the bottom-left numbers in the blocks (each with 2 rows) shown in A172002, the
atomic number of the leftmost element in the 2nd, 4th, 6th etc. row of the Janet table.

References

  • Charles Janet, La structure du noyau de l'atome .., Nov 1927, page 15.

Programs

Formula

First differences: a(n)-a(n-1) = 2+4*n+4*n^2 = 1+(1+2n)^2 = 1 + A016754(n+1) = A069894(n+1).
Second differences: a(n) - 2*a(n-1) + a(n-2) = 8*n = A008590(n+2).
Third differences: a(n) - 3*a(n-1) + 3*a(n-2) - a(n-3) = 8.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: (3 + x + 5*x^2 - x^3)/(1-x)^4.
a(n) = A166464(n) + 2*(n+1)^2 = A166464(n) + A001105(n+1).
E.g.f.: (1/3)*(9 + 30*x + 24*x^2 + 4*x^3)*exp(x). - G. C. Greubel, May 28 2016

Extensions

Edited and extended by R. J. Mathar, Mar 02 2010

A167381 The numbers read down the left-center column of an arrangement of the natural numbers in square blocks.

Original entry on oeis.org

1, 3, 6, 10, 14, 18, 23, 29, 35, 41, 47, 53, 60, 68, 76, 84, 92, 100, 108, 116, 125, 135, 145, 155, 165, 175, 185, 195, 205, 215, 226, 238, 250, 262, 274, 286, 298, 310, 322, 334, 346, 358, 371, 385, 399, 413, 427, 441, 455, 469, 483, 497, 511, 525, 539, 553
Offset: 1

Views

Author

Paul Curtz, Nov 02 2009

Keywords

Comments

The natural numbers are filled into square blocks of edge length 2, 4, 6, 8, ...
by taking A016742(n+1) = 4, 16, 36, ... at a time:
.......1..2......
.......3..4......
....5..6..7..8...
....9.10.11.12...
...13.14.15.16...
...17.18.19.20...
21.22.23.24.25.26
27.28.29.30.31.32
33.34.35.36.37.38
39.40.41.42.43.44
Reading down the column just left from the center yields a(n).
The length of the rows is given by A001670.
The number of elements in each square block, 4, 16, 36, etc., are the first differences of A166464:
A016742(n) = A166464(n)-A166464(n-1).
Reading the blocks from right to left, row by row, we obtain a permutation of the integers, which starts similar to A166133.

Crossrefs

Cf. A113127, A167991 (first differences).

Programs

  • Mathematica
    r[1] = Range[4]; r[n_] := r[n] = Range[r[n-1][[-1]]+1, r[n-1][[-1]]+(2n)^2 ];
    s[n_] := Partition[r[n], Sqrt[Length[r[n]]]][[All, n]];
    A167381 = Table[s[n], {n, 1, 7}] // Flatten (* Jean-François Alcover, Mar 26 2017 *)
    Module[{nn=7,c},c=TakeList[Range[(2/3)*nn(nn+1)(2*nn+1)],(2*Range[ nn])^2]; Table[Take[c[[n]],{n,-1,2*n}],{n,nn}]]//Flatten (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 18 2018 *)

Extensions

Edited by R. J. Mathar, Aug 29 2010
More terms from Jean-François Alcover, Mar 26 2017

A168234 A138100(n) + A168142(n).

Original entry on oeis.org

3, 3, 13, 13, 13, 13, 13, 13, 13, 13, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 171, 171, 171, 171, 171, 171, 171
Offset: 1

Views

Author

Paul Curtz, Nov 21 2009

Keywords

Comments

A138100 counts upwards in blocks of 2*k^2 numbers, restarting from 1,5,21,57,.. = A166464(k-1) = (2*k+1)*(2*k^2-4*k+3)/3, k>=1.
A168142 counts downwards in blocks of 2*k^2 numbers, restarting from 2*k^2, k>=1.
In consequence, the sequence here contains 2*k^2 copies of the number 1+2*k*(1+2*k^2)/3 = 1+A035597(k), k>=1,
where the sequence A035597 is a bisection of A168380.

Crossrefs

Extensions

Edited by R. J. Mathar, Feb 15 2010

A168388 First number in the n-th row of A172002.

Original entry on oeis.org

1, 3, 5, 13, 21, 39, 57, 89, 121, 171, 221, 293, 365, 463, 561, 689, 817, 979, 1141, 1341, 1541, 1783, 2025, 2313, 2601, 2939, 3277, 3669, 4061, 4511, 4961, 5473, 5985, 6563, 7141, 7789, 8437, 9159, 9881, 10681, 11481, 12363, 13245, 14213, 15181, 16239, 17297
Offset: 1

Views

Author

Paul Curtz, Nov 24 2009

Keywords

Crossrefs

Cf. A168234.

Programs

Formula

a(2*n+1) = A166464(n) a(2*n) = A166911(n).
a(n+1) - a(n) = A093907(n-1), n>1.
a(n) = 2*a(n-1) +a(n-2) -4*a(n-3) +a(n-4) +2*a(n-5) -a(n-6).
G.f.: x*(1 - x^2 + 2*x)*(1 - x + x^2 + x^3)/( (1+x)^2 * (x-1)^4).
a(n+1) = A168380(n)+1.
From G. C. Greubel, Jul 19 2016: (Start)
a(n) = (12 + n + 3*(-1)^n*n + 2*n^3)/12.
E.g.f.: (1/12)*( -3*x - 12*exp(x) + (12 + 3*x + 6*x^2 + 2*x^3)*exp(2*x) )*exp(-x). (End)

Extensions

Edited and extended by R. J. Mathar, Mar 25 2010

A168547 a(n) = 1 - 2*n^2 + 4*n*(1 + 2*n^2)/3.

Original entry on oeis.org

1, 3, 17, 59, 145, 291, 513, 827, 1249, 1795, 2481, 3323, 4337, 5539, 6945, 8571, 10433, 12547, 14929, 17595, 20561, 23843, 27457, 31419, 35745, 40451, 45553, 51067, 57009, 63395, 70241, 77563, 85377, 93699, 102545, 111931, 121873, 132387, 143489, 155195
Offset: 0

Views

Author

Paul Curtz, Nov 29 2009

Keywords

Comments

Binomial transform of the quasi-finite sequence 1,2,12,16,0,... (0 continued).
A bisection of A168582.

Programs

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: (1 - x + 11*x^2 + 5*x^3)/(x-1)^4.
First differences: a(n+1) - a(n) = 2*A054569(n+1).
Second differences: a(n+2) - 2*a(n+1) + a(n) = 4*A004767(n).
Third differences: a(n+3) - 3*a(n+2) + 3*a(n+1) - a(n) = 16.
a(n+1) = A166464(n) + A035597(n+1).
a(n) = 1 - 2*n^2 + 4*A005900(n). - R. J. Mathar, Dec 05 2009
E.g.f.: (1/3)*(3 + 6*x + 18*x^2 + 8*x^3)*exp(x). - G. C. Greubel, Jul 26 2016

Extensions

Edited and extended by R. J. Mathar, Dec 05 2009

A167471 Janet periodic table of the elements and structured hexagonal diamond numbers. a(n) = A166911(2*n) + A166911(2*n+1).

Original entry on oeis.org

16, 128, 464, 1152, 2320, 4096, 6608, 9984, 14352, 19840, 26576, 34688, 44304, 55552, 68560, 83456, 100368, 119424, 140752, 164480, 190736, 219648, 251344, 285952, 323600, 364416, 408528, 456064, 507152, 561920, 620496, 683008, 749584, 820352, 895440, 974976
Offset: 1

Views

Author

Paul Curtz, Nov 04 2009

Keywords

Crossrefs

Programs

  • Magma
    [16*n*(2-3*n+4*n^2)/3: n in [1..40]]; // Vincenzo Librandi, Aug 03 2011
  • Mathematica
    Table[16*n*(2 - 3*n + 4*n^2)/3, {n,1,50}] (* G. C. Greubel, Jun 13 2016 *)

Formula

a(n) = 16*n*(2 - 3*n + 4*n^2)/3 = 16*A100178(n).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), a(1)=16, a(2)=128, a(3)=464, a(4)=1152.
From Elmo R. Oliveira, Aug 28 2025: (Start)
G.f.: 16*x*(1 + 4*x + 3*x^2)/(1 - x)^4.
E.g.f.: 16*x*(3 + 9*x + 4*x^2)*exp(x)/3.
a(n) = A019558(n)/3. (End)

A167498 a(n) = 6+32*n^2+8*n*(7+8*n^2)/3.

Original entry on oeis.org

6, 78, 342, 926, 1958, 3566, 5878, 9022, 13126, 18318, 24726, 32478, 41702, 52526, 65078, 79486, 95878, 114382, 135126, 158238, 183846, 212078, 243062, 276926, 313798, 353806, 397078, 443742, 493926, 547758, 605366, 666878, 732422, 802126, 876118, 954526, 1037478, 1125102
Offset: 0

Views

Author

Paul Curtz, Nov 05 2009

Keywords

Comments

Binomial transform of quasi-finite sequence 6,72,192,128,0,(0 continued).
a(n) mod 10 is periodic with period length 5: repeat 6,8,2,6,8.

Crossrefs

Programs

  • Magma
    [6+32*n^2+8*n*(7+8*n^2)/3: n in [0..50] ]; // Vincenzo Librandi, Aug 06 2011
  • Mathematica
    LinearRecurrence[{4,-6,4,-1}, {6, 78, 342, 926}, 100] (* G. C. Greubel, Jun 14 2016 *)

Formula

a(n) = A166464(n) + A166464(2n+1).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 128.
G.f.: ( 6+54*x+66*x^2+2*x^3 ) / (x-1)^4 . - R. J. Mathar, Jul 01 2011
Showing 1-9 of 9 results.