A016787
a(n) = (3*n + 1)^11.
Original entry on oeis.org
1, 4194304, 1977326743, 100000000000, 1792160394037, 17592186044416, 116490258898219, 584318301411328, 2384185791015625, 8293509467471872, 25408476896404831, 70188843638032384, 177917621779460413, 419430400000000000, 929293739471222707, 1951354384207722496
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
A102214
Expansion of (1 + 4*x + 4*x^2)/((1+x)*(1-x)^3).
Original entry on oeis.org
1, 6, 16, 30, 49, 72, 100, 132, 169, 210, 256, 306, 361, 420, 484, 552, 625, 702, 784, 870, 961, 1056, 1156, 1260, 1369, 1482, 1600, 1722, 1849, 1980, 2116, 2256, 2401, 2550, 2704, 2862, 3025, 3192, 3364, 3540, 3721, 3906, 4096, 4290, 4489, 4692, 4900
Offset: 0
-
[(6*n*(3*n+4)+(-1)^n+7)/8: n in [0..60]]; // Vincenzo Librandi, Oct 26 2011
-
aa = {}; Do[i = 0; Do[Do[Do[If[x + y == z, i = i + 1], {x, y + 1, 3 n}], {y, 1, 3 n}], {z, 1, 3 n}]; AppendTo[aa, i], {n, 1, 20}]; aa (* Artur Jasinski, Feb 09 2010 *)
-
a(n)=(6*n*(3*n+4)+(-1)^n+7)/8 \\ Charles R Greathouse IV, Apr 16 2020
A016786
a(n) = (3*n+1)^10.
Original entry on oeis.org
1, 1048576, 282475249, 10000000000, 137858491849, 1099511627776, 6131066257801, 26559922791424, 95367431640625, 296196766695424, 819628286980801, 2064377754059776, 4808584372417849, 10485760000000000, 21611482313284249, 42420747482776576, 79792266297612001
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
-
[(3*n+1)^10: n in [0..20]]; // Vincenzo Librandi, Sep 29 2011
-
Table[(3n+1)^10,{n,0,100}] (* Mohammad K. Azarian, Jun 15 2016 *)
LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,1048576,282475249,10000000000,137858491849,1099511627776,6131066257801,26559922791424,95367431640625,296196766695424,819628286980801},20] (* Harvey P. Dale, May 14 2019 *)
A095872
Square of the lower triangular matrix T[i,j] = 3j-2 for 1<=j<=i, read by rows.
Original entry on oeis.org
1, 5, 16, 12, 44, 49, 22, 84, 119, 100, 35, 136, 210, 230, 169, 51, 200, 322, 390, 377, 256, 70, 176, 455, 580, 624, 560, 361, 70, 276, 455, 580, 624, 560, 361, 92, 364, 609, 800, 910, 912, 779, 484, 117, 464, 784, 1050, 1235, 1312, 1254, 1034, 625, 145, 576, 980, 1330, 1599
Offset: 1
Let M = the infinite lower triangular matrix in the format exemplified by a 3rd order matrix: [1 0 0 / 1 4 0 / 1 4 7]: i.e. for the n-th order matrix, each row has n terms in the series 1, 4, 7, 10... with the rest of the spaces filled in with zeros. Square the matrix and delete the zeros; then read by rows.
[1 0 0 / 1 4 0 / 1 4 7]^2 = [1 0 0 / 5 16 0 / 12 44 49]; then delete the zeros and read by rows: 1, 5, 16, 12, 44, 49...
-
A095802(n)={ my( r=sqrtint(2*n)+1, T=matrix(r,r,i,j,if(j>=i,3*j-2))^2); concat(vector(#T,i,vecextract(T[,i],2^i-1)))[n] } \\ M. F. Hasler, Apr 18 2009
A274221
List of quadruples: 3*n*(3*n-1), 3*n*(3*n+1), (3*n+1)^2, (3*n+2)^2.
Original entry on oeis.org
0, 0, 1, 4, 6, 12, 16, 25, 30, 42, 49, 64, 72, 90, 100, 121, 132, 156, 169, 196, 210, 240, 256, 289, 306, 342, 361, 400, 420, 462, 484, 529, 552, 600, 625, 676, 702, 756, 784, 841, 870, 930, 961, 1024, 1056, 1122, 1156, 1225, 1260, 1332, 1369, 1444, 1482
Offset: 0
-
&cat [[3*n*(3*n-1), 3*n*(3*n+1), (3*n+1)^2, (3*n+2)^2]: n in [0..15]]; // Bruno Berselli, Sep 15 2016
-
Flatten[Table[{3 n (3 n - 1), 3 n (3 n + 1), (3 n + 1)^2, (3 n + 2)^2}, {n, 0, 15}]] (* Bruno Berselli, Sep 15 2016 *)
A016788
a(n) = (3*n+1)^12.
Original entry on oeis.org
1, 16777216, 13841287201, 1000000000000, 23298085122481, 281474976710656, 2213314919066161, 12855002631049216, 59604644775390625, 232218265089212416, 787662783788549761, 2386420683693101056, 6582952005840035281, 16777216000000000000, 39959630797262576401
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
Cf.
A008456,
A016777,
A016778,
A016779,
A016780,
A016781,
A016782,
A016783,
A016784,
A016785,
A016786,
A016787.
A347533
Array A(n,k) where A(n,0) = n and A(n,k) = (k*n + 1)^2 - A(n,k-1), n > 0, read by ascending antidiagonals.
Original entry on oeis.org
1, 2, 3, 3, 7, 6, 4, 13, 18, 10, 5, 21, 36, 31, 15, 6, 31, 60, 64, 50, 21, 7, 43, 90, 109, 105, 71, 28, 8, 57, 126, 166, 180, 151, 98, 36, 9, 73, 168, 235, 275, 261, 210, 127, 45, 10, 91, 216, 316, 390, 401, 364, 274, 162, 55, 11, 111, 270, 409, 525, 571, 560, 477, 351, 199, 66
Offset: 1
Array, A(n, k), begins:
1 3 6 10 15 21 28 36 45 ... A000217;
2 7 18 31 50 71 98 127 162 ... A195605;
3 13 36 64 105 151 210 274 351 ...
4 21 60 109 180 261 364 477 612 ...
5 31 90 166 275 401 560 736 945 ...
6 43 126 235 390 571 798 1051 1350 ...
7 57 168 316 525 771 1078 1422 1827 ...
8 73 216 409 680 1001 1400 1849 2376 ...
9 91 270 514 855 1261 1764 2332 2997 ...
Antidiagonals, T(n, k), begin as:
1;
2, 3;
3, 7, 6;
4, 13, 18, 10;
5, 21, 36, 31, 15;
6, 31, 60, 64, 50, 21;
7, 43, 90, 109, 105, 71, 28;
8, 57, 126, 166, 180, 151, 98, 36;
9, 73, 168, 235, 275, 261, 210, 127, 45;
10, 91, 216, 316, 390, 401, 364, 274, 162, 55;
Family of sequences (k*n + 1)^2:
A016754 (k=2),
A016778 (k=3),
A016814 (k=4),
A016862 (k=5),
A016922 (k=6),
A016994 (k=7),
A017078 (k=8),
A017174 (k=9),
A017282 (k=10),
A017402 (k=11),
A017534 (k=12),
A134934 (k=14).
-
A347533:= func< n,k | (1/2)*((k*(n-k)+1)*((k+1)*(n-k)+1) +(-1)^k*(n-k- 1)) >;
[A347533(n,k): k in [0..n-1], n in [1..13]]; // G. C. Greubel, Dec 25 2022
-
A[n_, 0]:= n; A[n_, k_]:= (k*n+1)^2 -A[n,k-1]; Table[Function[n, A[n, k]][m-k+1], {m,0,10}, {k,0,m}]//Flatten (* Michael De Vlieger, Oct 27 2021 *)
-
def A347533(n,k): return (1/2)*((k*(n-k)+1)*((k+1)*(n-k)+1) +(-1)^k*(n-k- 1))
flatten([[A347533(n,k) for k in range(n)] for n in range(1,14)]) # G. C. Greubel, Dec 25 2022
A017570
a(n) = (12*n + 4)^2.
Original entry on oeis.org
16, 256, 784, 1600, 2704, 4096, 5776, 7744, 10000, 12544, 15376, 18496, 21904, 25600, 29584, 33856, 38416, 43264, 48400, 53824, 59536, 65536, 71824, 78400, 85264, 92416, 99856, 107584, 115600
Offset: 0
Comments