cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 53 results. Next

A304506 a(n) = 2*(3*n+1)*(9*n+8).

Original entry on oeis.org

16, 136, 364, 700, 1144, 1696, 2356, 3124, 4000, 4984, 6076, 7276, 8584, 10000, 11524, 13156, 14896, 16744, 18700, 20764, 22936, 25216, 27604, 30100, 32704, 35416, 38236, 41164, 44200, 47344, 50596, 53956, 57424, 61000, 64684, 68476, 72376, 76384, 80500, 84724, 89056
Offset: 0

Views

Author

Emeric Deutsch, May 14 2018

Keywords

Comments

a(n) is the second Zagreb index of the single-defect 4-gonal nanocone CNC(4,n) (see definition in the Doslic et al. reference, p. 27).
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of CNC(4,n) is M(CNC(4,n);x,y) = 4*x^2*y^2 + 8*n*x^2*y^3 + 2*n*(3*n+1)*x^3*y^3.
More generally, the M-polynomial of CNC(k,n) is M(CNC(k,n); x,y) = k*x^2*y^2 + 2*k*n*x^2*y^3 + k*n*(3*n + 1)*x^3*y^3/2.
6*a(n) + 25 is a square. - Bruno Berselli, May 14 2018

Crossrefs

Programs

  • GAP
    List([0..50],n->2*(3*n+1)*(9*n+8)); # Muniru A Asiru, May 14 2018
    
  • Maple
    seq((2*(9*n+8))*(3*n+1), n = 0 .. 40);
  • Mathematica
    Table[2(3n+1)(9n+8),{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{16,136,364},50] (* Harvey P. Dale, Aug 15 2022 *)
  • PARI
    a(n) = 2*(3*n+1)*(9*n+8); \\ Altug Alkan, May 14 2018
    
  • PARI
    Vec(4*(4 + 22*x + x^2) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 14 2018

Formula

From Colin Barker, May 14 2018: (Start)
G.f.: 4*(4 + 22*x + x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: 2*exp(x)*(8 + 60*x + 27*x^2).
a(n) = A016933(n)*A017257(n). (End)

A326728 A(n, k) = n*(k - 1)*k/2 - k, square array for n >= 0 and k >= 0 read by ascending antidiagonals.

Original entry on oeis.org

0, 0, -1, 0, -1, -2, 0, -1, -1, -3, 0, -1, 0, 0, -4, 0, -1, 1, 3, 2, -5, 0, -1, 2, 6, 8, 5, -6, 0, -1, 3, 9, 14, 15, 9, -7, 0, -1, 4, 12, 20, 25, 24, 14, -8, 0, -1, 5, 15, 26, 35, 39, 35, 20, -9, 0, -1, 6, 18, 32, 45, 54, 56, 48, 27, -10
Offset: 0

Views

Author

Peter Luschny, Aug 04 2019

Keywords

Comments

A formal extension of the figurative numbers A139600 to negative n.

Examples

			[0] 0, -1, -2, -3, -4, -5, -6,  -7,  -8,  -9, -10, ... A001489
[1] 0, -1, -1,  0,  2,  5,  9,  14,  20,  27,  35, ... A080956
[2] 0, -1,  0,  3,  8, 15, 24,  35,  48,  63,  80, ... A067998
[3] 0, -1,  1,  6, 14, 25, 39,  56,  76,  99, 125, ... A095794
[4] 0, -1,  2,  9, 20, 35, 54,  77, 104, 135, 170, ... A014107
[5] 0, -1,  3, 12, 26, 45, 69,  98, 132, 171, 215, ... A326725
[6] 0, -1,  4, 15, 32, 55, 84, 119, 160, 207, 260, ... A270710
[7] 0, -1,  5, 18, 38, 65, 99, 140, 188, 243, 305, ...
		

Crossrefs

Cf. A001489 (n=0), A080956 (n=1), A067998 (n=2), A095794 (n=3), A014107 (n=4), A326725 (n=5), A270710 (n=6).
Columns include A008585, A016933, A017329.
Cf. A139600.

Programs

  • Maple
    A := (n, k) -> n*(k - 1)*k/2 - k:
    seq(seq(A(n - k, k), k=0..n), n=0..11);
  • Python
    def A326728Row(n):
        x, y = 1, 1
        yield 0
        while True:
            yield -x
            x, y = x + y - n, y - n
    for n in range(8):
        R = A326728Row(n)
    print([next(R) for _ in range(11)])

A016944 a(n) = (6*n + 2)^12.

Original entry on oeis.org

4096, 68719476736, 56693912375296, 4096000000000000, 95428956661682176, 1152921504606846976, 9065737908494995456, 52654090776777588736, 244140625000000000000, 951166013805414055936, 3226266762397899821056, 9774779120406941925376, 26963771415920784510976
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [(6*n+2)^12: n in [0..20]]; // Vincenzo Librandi, May 05 2011
  • Mathematica
    (6*Range[0,20]+2)^12 (* or *) LinearRecurrence[{13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1},{4096,68719476736,56693912375296,4096000000000000,95428956661682176,1152921504606846976,9065737908494995456,52654090776777588736,244140625000000000000,951166013805414055936,3226266762397899821056,9774779120406941925376,26963771415920784510976},20] (* Harvey P. Dale, Aug 03 2021 *)

Formula

From Amiram Eldar, Mar 30 2022: (Start)
a(n) = A016933(n)^12 = A016934(n)^6 = A016935(n)^4 = A016936(n)^3 = A016938(n)^2.
a(n) = 2^12*A016788(n).
Sum_{n>=0} 1/a(n) = PolyGamma(11, 1/3)/86890185149644800. (End)

A078689 Continued fraction expansion of e^(1/3).

Original entry on oeis.org

1, 2, 1, 1, 8, 1, 1, 14, 1, 1, 20, 1, 1, 26, 1, 1, 32, 1, 1, 38, 1, 1, 44, 1, 1, 50, 1, 1, 56, 1, 1, 62, 1, 1, 68, 1, 1, 74, 1, 1, 80, 1, 1, 86, 1, 1, 92, 1, 1, 98, 1, 1, 104, 1, 1, 110, 1, 1, 116, 1, 1, 122, 1, 1, 128, 1, 1, 134, 1, 1, 140, 1, 1, 146
Offset: 0

Views

Author

Benoit Cloitre, Dec 17 2002

Keywords

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[Exp[1/3], 100] (* Amiram Eldar, May 20 2022 *)

Formula

a(3k+1) = 6k+2, otherwise a(i) = 1.
G.f.: -(x^2-x+1)*(x^3-3*x^2-3*x-1) / ((x-1)^2*(x^2+x+1)^2). - Colin Barker, Jun 24 2013
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi/18 + log(2)/6. - Amiram Eldar, May 04 2025

A101468 Triangle read by rows: T(n,k)=(n+1-k)*(3*k+1).

Original entry on oeis.org

1, 2, 4, 3, 8, 7, 4, 12, 14, 10, 5, 16, 21, 20, 13, 6, 20, 28, 30, 26, 16, 7, 24, 35, 40, 39, 32, 19, 8, 28, 42, 50, 52, 48, 38, 22, 9, 32, 49, 60, 65, 64, 57, 44, 25, 10, 36, 56, 70, 78, 80, 76, 66, 50, 28, 11, 40, 63, 80, 91, 96, 95, 88, 75, 56, 31, 12, 44, 70, 90, 104, 112, 114
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.de) and Gary W. Adamson, Jan 21 2005

Keywords

Comments

The triangle is generated from the product A*B
of the infinite lower triangular matrices A =
1 0 0 0...
1 1 0 0...
1 1 1 0...
1 1 1 1...
... and B =
1 0 0 0...
1 4 0 0...
1 4 7 0...
1 4 7 10...
...
Row sums give pentagonal pyramidal numbers A002411 T(n+0,0)= 1*n=A000027(n) T(n+0,1)= 4*n=A008586(n) T(n+1,2)= 7*n=A008589(n) T(n+2,3)=10*n=A008592(n) ...
so for example T(n+1,n-0)=6*n+2=A016933(n) T(n+1,n-1)=9*n+3=A017197(n) T(n+2,n-1)=12*n+4=A017569(n)
T(n,0)*T(n,1) = A033996(n) (8 times triangular numbers)
T(n,n)*T(n,0) = A000567(n+1) (Octagonal numbers) etc.

Examples

			Triangle begins:
1,
2,  4,
3,  8,  7,
4,  12, 14, 10,
5,  16, 21, 20, 13,
6,  20, 28, 30, 26, 16,
7,  24, 35, 40, 39, 32, 19,
8,  28, 42, 50, 52, 48, 38, 22,
9,  32, 49, 60, 65, 64, 57, 44, 25,
10, 36, 56, 70, 78, 80, 76, 66, 50, 28,
11, 40, 63, 80, 91, 96, 95, 88, 75, 56, 31, etc.
[_Bruno Berselli_, Feb 10 2014]
		

Crossrefs

Cf. A095871 (product B*A), A002411.

Programs

  • Mathematica
    t[n_, k_] := If[n < k, 0, (3*k + 1)*(n - k + 1)]; Flatten[ Table[ t[n, k], {n, 0, 11}, {k, 0, n}]] (* Robert G. Wilson v, Jan 21 2005 *)
  • PARI
    T(n,k)=if(k>n,0,(n-k+1)*(3*k+1)) for(i=0,10, for(j=0,i,print1(T(i,j),", "));print())

A141431 Triangle T(n,k) = (k-1)*(3*n-k+1), read by rows.

Original entry on oeis.org

0, 0, 5, 0, 8, 14, 0, 11, 20, 27, 0, 14, 26, 36, 44, 0, 17, 32, 45, 56, 65, 0, 20, 38, 54, 68, 80, 90, 0, 23, 44, 63, 80, 95, 108, 119, 0, 26, 50, 72, 92, 110, 126, 140, 152, 0, 29, 56, 81, 104, 125, 144, 161, 176, 189, 0, 32, 62, 90, 116, 140, 162, 182, 200, 216, 230, 0, 35, 68, 99, 128, 155, 180, 203, 224, 243, 260, 275
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Aug 06 2008

Keywords

Examples

			Triangle begins as:
  0;
  0,  5;
  0,  8, 14;
  0, 11, 20, 27;
  0, 14, 26, 36,  44;
  0, 17, 32, 45,  56,  65;
  0, 20, 38, 54,  68,  80,  90;
  0, 23, 44, 63,  80,  95, 108, 119;
  0, 26, 50, 72,  92, 110, 126, 140, 152;
  0, 29, 56, 81, 104, 125, 144, 161, 176, 189;
		

Crossrefs

Columns: A016789 (k=2), A016933 (k=3), A008591 (k=4).
Cf. A245301 (row sums).

Programs

  • Magma
    [(k-1)*(3*n-k+1): k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 31 2021
    
  • Maple
    A141431 := proc(n,k)
            (k-1)*(3*n-k+1) ;
    end proc:
    seq(seq(A141431(n,k),k=1..n),n=1..14) ; # R. J. Mathar, Nov 10 2011
  • Mathematica
    Table[(k-1)*(3*n-k+1), {n,15}, {k,n}]//Flatten (* G. C. Greubel, Mar 31 2021 *)
  • Sage
    flatten([[(k-1)*(3*n-k+1) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 31 2021

Formula

G.f.: Sum_{n>=0} Sum_{k>=0} T(n,k)*x^n*y^k = y^2*x*(x*y-4*y+x+2)/((1-y)^3*(1-x)^2). - R. J. Mathar, Nov 27 2015. x and y swapped to align with standard, 19 Feb 2020
Sum_{k=1..n} T(n, k) = (n-1)*n*(7*n+1)/6 = A245301(n-1). - G. C. Greubel, Mar 31 2021

Extensions

More terms added by G. C. Greubel, Mar 31 2021

A163979 a(n) = n*(n-1) + A144437(n+2).

Original entry on oeis.org

1, 3, 5, 7, 15, 23, 31, 45, 59, 73, 93, 113, 133, 159, 185, 211, 243, 275, 307, 345, 383, 421, 465, 509, 553, 603, 653, 703, 759, 815, 871, 933, 995, 1057, 1125, 1193, 1261, 1335, 1409, 1483, 1563, 1643, 1723, 1809, 1895, 1981, 2073, 2165, 2257, 2355, 2453, 2551
Offset: 0

Views

Author

Paul Curtz, Aug 07 2009

Keywords

Comments

First differences are 2, 2, 2, 8, 8, 8, 14, 14, 14, 20, 20, 20,... (triplicated A016933).

Programs

  • Mathematica
    LinearRecurrence[{2,-1,1,-2,1},{1,3,5,7,15},60]  (* or *) CoefficientList[ Series[-(1+x+5x^4-x^3)/((1+x+x^2)(x-1)^3), {x,0,60}],x]  (* Harvey P. Dale, Apr 20 2011 *)
  • PARI
    x='x+O('x^50); Vec((1+x-x^3+5*x^4)/((1+x+x^2)*(1-x)^3)) \\ G. C. Greubel, Aug 24 2017

Formula

a(n) = A002378(n-1) + A144437(n+2).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5).
G.f.: (1 +x -x^3 +5*x^4)/( (1 +x +x^2)*(1 -x)^3 ).
E.g.f.: (1/3)*((7+3*x^2)*exp(x) - 4*exp(-x/2)*cos(sqrt(3)*x/2)). - G. C. Greubel, Aug 24 2017

Extensions

Edited and extended by R. J. Mathar, Aug 12 2009

A215898 a(4n) = 1+4n, a(1+4n) = -2-6n, a(2+4n) = 4+6n, a(3+4n) = -3-4n.

Original entry on oeis.org

1, -2, 4, -3, 5, -8, 10, -7, 9, -14, 16, -11, 13, -20, 22, -15, 17, -26, 28, -19, 21, -32, 34, -23, 25, -38, 40, -27, 29, -44, 46, -31, 33, -50, 52, -35, 37, -56, 58, -39, 41, -62, 64, -43, 45, -68, 70, -47, 49, -74, 76, -51, 53, -80, 82, -55, 57, -86, 88, -59
Offset: 0

Views

Author

Paul Curtz, Aug 25 2012

Keywords

Comments

A permutation of A047253, numbers that are not divisible by 6.

Crossrefs

Programs

  • Magma
    m:=60; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x+3*x^2+3*x^4-x^5+x^6)/((1-x)*(1+x+x^2+x^3)^2))); // Bruno Berselli, Sep 06 2012
    
  • Mathematica
    a[n_ /; Mod[n, 4] == 0] := n+1; a[n_ /; Mod[n, 4] == 1] := -(3n+1)/2; a[n_ /; Mod[n, 4] == 2] := (3n+2)/2; a[n_ /; Mod[n, 4] == 3] := -n; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Sep 03 2012 *)
    LinearRecurrence[{-1,-1,-1,1,1,1,1},{1,-2,4,-3,5,-8,10},60] (* Harvey P. Dale, Mar 24 2023 *)
  • Maxima
    makelist(expand(1+(5-%i^(n*(n+1)))*((2*n+1)*(-1)^n-1)/8), n, 0, 60); /* Bruno Berselli, Sep 07 2012 */

Formula

a(n) = 2*a(n-4) - a(n-8).
a(2*n) + a(1+2*n) = -A109613(n)*(-1)^n.
a(3*n) + a(1+3*n) + a(2+3*n) = 3*a(n).
a(4*n) + a(1+4*n) + a(2+4*n) + a(3+4*n) = 0.
a(5*n) + a(1+5*n) + a(2+5*n) + a(3+5*n) + a(4+5*n) = 5*a(n).
From Bruno Berselli, Sep 07 2012: (Start)
G.f.: (1-x+3*x^2+3*x^4-x^5+x^6)/((1-x)*(1+x+x^2+x^3)^2).
a(n) = 1+(5-i^(n*(n+1)))*((2*n+1)*(-1)^n-1)/8, where i=sqrt(-1).
a(2*n) = 1+(5-(-1)^n)*n/2; a(2*n+1) = 1-(5+(-1)^n)*(n+1)/2.
a(n) = a(-n-1) = -a(n-1)-a(n-2)-a(n-3)+a(n-4)+a(n-5)+a(n-6)+a(n-7). (End)

A278814 a(n) = ceiling(sqrt(3n+1)).

Original entry on oeis.org

1, 2, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18
Offset: 0

Views

Author

Mohammad K. Azarian, Nov 28 2016

Keywords

Crossrefs

Programs

  • Derive
    PROG(y := [], n := 100, LOOP(IF(n = -1, RETURN y), y := ADJOIN(CEILING(SQRT(1 + 3·n)), y), n := n - 1))
    
  • Maple
    seq(ceil(sqrt(3*k+1)), k=0..100); # Robert Israel, Nov 28 2016
  • Mathematica
    Table[Ceiling[Sqrt[3n+1]],{n,0,100}]
  • PARI
    a(n)=sqrtint(3*n)+1 \\ Charles R Greathouse IV, Nov 29 2016
    
  • Python
    from math import isqrt
    def A278814(n): return 1+isqrt(3*n) # Chai Wah Wu, Jul 28 2022

Formula

a(n) = ceiling(sqrt(3n+1)).
From Robert Israel, Nov 28 2016: (Start)
G.f.: (1-x)^(-1)*Sum_{k>=0} (x^(3*k^2)+x^(3*k^2+2*k+1)+x^(3*k^2+4*k+2)).
a(n+1) = a(n)+1 if n is in A032765, otherwise a(n+1) = a(n). (End)
Sum_{n>=0} (-1)^n/a(n) = log(2) (A002162). - Amiram Eldar, Jun 18 2025

A340169 a(n) is the number of strings of length n over the alphabet {a,b,c} with the number of a's divisible by 3, and the number of b's and c's is at most 3.

Original entry on oeis.org

1, 2, 4, 9, 8, 40, 161, 14, 112, 673, 20, 220, 1761, 26, 364, 3641, 32, 544, 6529, 38, 760, 10641, 44, 1012, 16193, 50, 1300, 23401, 56, 1624, 32481, 62, 1984, 43649, 68, 2380, 57121, 74, 2812, 73113, 80, 3280, 91841, 86, 3784, 113521, 92, 4324, 138369, 98
Offset: 0

Views

Author

Diego Ramírez, Feb 25 2021

Keywords

Comments

In regular languages, the empty string is considered and since it meets the conditions, a(0)=1.

Examples

			a(3)=9, because the strings are aaa, bbb, bbc, bcb, cbb, bcc, cbc, ccb, ccc.
a(4)=8, because the strings are aaab, aaba, abaa, baaa, aaac, aaca, acaa, caaa.
		

References

  • Rodrigo de Castro, Teoría de la computación, 2004, unilibros.

Crossrefs

Cf. A016933.

Programs

  • MATLAB
    L=[""]; for k=1:15 L=[L+"a",L+"b",L+"c"]; c=0; for n=1:length(L) if (mod(count(L(n),"a"),3)==0&& count(L(n),"b")+count(L(l),"c")<=3) c=c+1; end end disp(c) end %show the sequence from 1 to n
  • Mathematica
    A340169[n_] := Switch[Mod[n, 3], 0, 4*n*(n-2)*(n-1)/3 + 1, 1, 2*n, 2, 2*n*(n-1)];
    Array[A340169, 100, 0] (* Paolo Xausa, Jul 22 2024 *)

Formula

a(n) = 4*a(n-3) - 6*a(n-6) + 4*a(n-9) - a(n-12).
If n == 0 (mod 3), a(n) = 1 + (8/3)*n - 4*n^2 + (4/3)*n^3.
If n == 1 (mod 3), a(n) = 2*n.
If n == 2 (mod 3), a(n) = -2*n + 2*n^2.
G.f.: (1 + 2*x + 4*x^2 + 5*x^3 + 24*x^5 + 131*x^6 - 6*x^7 - 24*x^8 + 79*x^9 + 4*x^10 - 4x^11)/(1 - x^3)^4. - Stefano Spezia, Feb 28 2021
Previous Showing 41-50 of 53 results. Next