cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A215146 a(n) = 21*n + 1.

Original entry on oeis.org

1, 22, 43, 64, 85, 106, 127, 148, 169, 190, 211, 232, 253, 274, 295, 316, 337, 358, 379, 400, 421, 442, 463, 484, 505, 526, 547, 568, 589, 610, 631, 652, 673, 694, 715, 736, 757, 778, 799, 820, 841, 862, 883, 904, 925, 946, 967, 988, 1009, 1030, 1051, 1072
Offset: 0

Views

Author

Jeremy Gardiner, Aug 04 2012

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,22]; [n le 2 select I[n] else 2*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Apr 19 2018
  • Mathematica
    Range[1, 1000, 21]
    LinearRecurrence[{2,-1}, {1,22}, 50] (* G. C. Greubel, Apr 19 2018 *)
  • PARI
    for(n=0, 50, print1(21*n + 1, ", ")) \\ G. C. Greubel, Apr 19 2018
    

Formula

From G. C. Greubel, Apr 19 2018: (Start)
a(n) = 2*a(n-1) - a(n-2).
G.f.: (1+20*x)/(1-x)^2.
E.g.f.: (21*x + 1)*exp(x). (End)
a(n) = A016993(3*n) = A016777(7*n). - Elmo R. Oliveira, Apr 12 2025

A047306 Numbers that are congruent to {0, 2, 3, 4, 5, 6} mod 7.

Original entry on oeis.org

0, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 49, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Keywords

Comments

Complement of A016993. - Michel Marcus, Sep 10 2015

Crossrefs

Cf. A016993.

Programs

  • Magma
    [n: n in [0..100] | n mod 7 in [0] cat [2..6]]; // Vincenzo Librandi, Oct 22 2014
  • Maple
    A047306:=n->n+floor((n-2)/6): seq(A047306(n), n=1..100); # Wesley Ivan Hurt, Sep 10 2015
  • Mathematica
    Select[Range[0, 100], MemberQ[{0, 2, 3, 4, 5, 6}, Mod[#, 7]] &] (* Vincenzo Librandi, Oct 22 2014 *)
    LinearRecurrence[{1,0,0,0,0,1,-1},{0,2,3,4,5,6,7},70] (* Harvey P. Dale, May 28 2018 *)
  • PARI
    concat(0, Vec(x^2*(2+x+x^2+x^3+x^4+x^5)/((1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2) + O(x^30))) \\ Michel Marcus, Oct 22 2014
    

Formula

G.f.: x^2*(2+x+x^2+x^3+x^4+x^5) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Sep 10 2015: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
a(n) = n + floor((n-2)/6). (End)
From Wesley Ivan Hurt, Jun 15 2016: (Start)
a(n) = (42*n-27+3*cos(n*Pi)-12*cos(n*Pi/3)-4*sqrt(3)*sin(2*n*Pi/3))/36.
a(6k) = 7k-1, a(6k-1) = 7k-2, a(6k-2) = 7k-3, a(6k-3) = 7k-4, a(6k-4) = 7k-5, a(6k-5) = 7k-7. (End)

Extensions

More terms from Michel Marcus, Oct 22 2014

A050478 a(n) = C(n)*(8*n+1) where C(n) = Catalan numbers (A000108).

Original entry on oeis.org

1, 9, 34, 125, 462, 1722, 6468, 24453, 92950, 354926, 1360476, 5231954, 20177164, 78004500, 302211720, 1173076245, 4561139430, 17761336230, 69257611500, 270391268070, 1056823387620
Offset: 0

Views

Author

Barry E. Williams, Dec 24 1999

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Column k=8 of A330965.

Programs

  • Magma
    [Catalan(n)*(8*n+1):n in [0..30]]; // Vincenzo Librandi, Jan 27 2013
    
  • Magma
    R:=PowerSeriesRing(Rationals(),30); (Coefficients(R!( (7-12*x-7*Sqrt(1-4*x))/(2*x*Sqrt(1-4*x))))); // Marius A. Burtea, Jan 05 2020
  • Mathematica
    Table[CatalanNumber[n](8n+1),{n,0,20}] (* Harvey P. Dale, May 20 2012 *)

Formula

-(n+1)*(8*n-7)*a(n) + 2*(8*n+1)*(2*n-1)*a(n-1) = 0. - R. J. Mathar, Dec 03 2014
G.f.: (7 - 12*x - 7*sqrt(1 - 4*x))/(2*x*sqrt(1 - 4*x)). - Ilya Gutkovskiy, Jun 13 2017
From Peter Bala, Aug 23 2025: (Start)
a(n) = binomial(2*n, n) + 7*binomial(2*n, n-1) = A000984(n) + 7*A001791(n).
a(n) ~ 2^(2*n+3)/sqrt(Pi*n). (End)

A131873 Right-to-left partial row sums of triangle A131844.

Original entry on oeis.org

1, 8, 4, 15, 8, 7, 22, 12, 11, 10, 29, 16, 15, 14, 13, 36, 20, 19, 18, 17, 16, 43, 24, 23, 22, 21, 20, 19, 50, 28, 27, 26, 25, 24, 23, 22, 57, 32, 31, 30, 29, 28, 27, 26, 25, 64, 36, 35, 34, 33, 32, 31, 30, 29, 28, 71, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 78, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 85, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 92, 52, 51, 50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40
Offset: 0

Views

Author

Gary W. Adamson, Jul 22 2007

Keywords

Comments

Left column = A016993, 7n + 1: (1, 8, 15, 22, 29, ...).
Right border = 3n + 1: (1, 4, 7, 10, 13, ...).
Row sums = A131874: (1, 12, 30, 55, ...).

Examples

			First few rows of the triangle:
   1;
   8,  4;
  15,  8,  7;
  22, 12, 11, 10;
  29, 16, 15, 14, 13;
  36, 20, 19, 18, 17, 16;
  43, 24, 23, 22, 21, 20, 19;
  ...
Row 4 of A131844 is 13, 1, 1, 1, 13, so row 4 of this sequence is 29, 16, 15, 14, 13.
		

Crossrefs

Extensions

Definition corrected and more terms added by Russ Cox, Apr 18 2024

A168337 a(n) = 1 + 7*floor(n/2).

Original entry on oeis.org

1, 8, 8, 15, 15, 22, 22, 29, 29, 36, 36, 43, 43, 50, 50, 57, 57, 64, 64, 71, 71, 78, 78, 85, 85, 92, 92, 99, 99, 106, 106, 113, 113, 120, 120, 127, 127, 134, 134, 141, 141, 148, 148, 155, 155, 162, 162, 169, 169, 176, 176, 183, 183, 190, 190, 197, 197, 204, 204, 211
Offset: 1

Views

Author

Vincenzo Librandi, Nov 23 2009

Keywords

Crossrefs

Programs

  • Magma
    [7*n/2 + 7*(-1)^n/4 - 3/4: n in [1..70]]; // Vincenzo Librandi, Sep 18 2013
  • Mathematica
    Table[ 1 + 7*floor(n/2) , {n,60}] (* Bruno Berselli, Sep 18 2013 *)
    CoefficientList[Series[(1 + 7 x - x^2)/((1 + x) (x - 1)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Sep 18 2013 *)

Formula

a(n) = 7*n - a(n-1) - 5, with n>1, a(1)=1.
From Vincenzo Librandi, Sep 18 2013: (Start)
G.f.: x*(1 + 7*x - x^2)/((1+x)*(x-1)^2).
a(n) = a(n-1) +a(n-2) -a(n-3).
a(n) = (14*n + 7*(-1)^n - 3)/4. (End)
a(n) = A168333(n) - 1 = A168374(n) + 1. - Bruno Berselli, Sep 18 2013
E.g.f.: (1/2)*(-2 + (7*x + 2)*cosh(x) + (7*x - 5)*sinh(x)). - G. C. Greubel, Jul 18 2016

Extensions

New definition by Bruno Berselli, Sep 18 2013

A249102 Numbers with no 1's in base-7 expansion.

Original entry on oeis.org

0, 2, 3, 4, 5, 6, 14, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 44, 45, 46, 47, 48, 98, 100, 101, 102, 103, 104, 112, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 128, 129, 130, 131, 132, 133
Offset: 1

Views

Author

Zak Seidov, Oct 21 2014

Keywords

Examples

			14_10 = 20_7, 16_10 = 22_10, 17_10 = 23_7.
14 in base 7 is 20, which contains no 1s, so 14 is in the sequence.
15 in base 7 is 21, which contains one 1, so 15 is not in the sequence.
16 in base 7 is 22, so 16 is in the sequence.
		

Crossrefs

Subsequence of A047306. Cf. A023721, A023725, A023729, A023733, A005823. This sequence has no terms in common with A016993.

Programs

  • Mathematica
    Select[Range[0, 200], FreeQ[IntegerDigits[#, 7], 1] &] (* Seidov *)
    Select[Range[0, 139], DigitCount[#, 7, 1] == 0 &] (* Alonso del Arte, Oct 26 2014 *)
  • PARI
    fromdigits(v, b=10)=subst(Pol(v), 'x, b) \\ needed for gp < 2.63 or so
    a(n)=a(n)=fromdigits(apply(k->if(k, k+1, 0), digits(n, 6)),7) \\ Charles R Greathouse IV, Oct 30 2014

A291747 Nonprimes of the form 7*k + 1.

Original entry on oeis.org

1, 8, 15, 22, 36, 50, 57, 64, 78, 85, 92, 99, 106, 120, 134, 141, 148, 155, 162, 169, 176, 183, 190, 204, 218, 225, 232, 246, 253, 260, 267, 274, 288, 295, 302, 309, 316, 323, 330, 344, 351, 358, 365, 372, 386, 393, 400, 407, 414, 428, 435, 442, 456, 470, 477, 484, 498
Offset: 1

Views

Author

Vincenzo Librandi, Aug 31 2017

Keywords

Comments

Subsequence of A018252.

Crossrefs

Programs

  • Magma
    [n: n in [1..500 by 7] | not IsPrime(n)];
  • Mathematica
    DeleteCases[7 Range[0, 200] + 1, _?PrimeQ]

A354937 Row 7 of A354940: Numbers k for which A345992(k) = 7, divided by 7.

Original entry on oeis.org

4, 5, 8, 11, 15, 19, 22, 25, 29, 32, 39, 43, 47, 50, 53, 57, 61, 64, 67, 71, 78, 81, 89, 92, 95, 99, 103, 106, 109, 113, 127, 131, 134, 137, 141, 151, 155, 162, 169, 173, 176, 179, 183, 190, 193, 197, 211, 218, 229, 232, 239, 243, 256, 257, 263, 267, 271, 274, 277, 281, 291, 295, 302, 309, 313, 316, 323, 337, 344
Offset: 1

Views

Author

Antti Karttunen, Jun 15 2022

Keywords

Comments

Apparently, all terms are either of the form 7k+1 (in A016993), 7k+4 (A017029) or 7k+5 (A017041).

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{m = 1}, While[!Divisible[m*(m + 1), 7*n], m++]; GCD[7*n, m] == 7]; Select[Range[345], q] (* Amiram Eldar, Jun 17 2022 *)
  • PARI
    A354937(n) = A354940sq(7,n);

A001526 a(n) = (7*n+1)*(7*n+6).

Original entry on oeis.org

6, 104, 300, 594, 986, 1476, 2064, 2750, 3534, 4416, 5396, 6474, 7650, 8924, 10296, 11766, 13334, 15000, 16764, 18626, 20586, 22644, 24800, 27054, 29406, 31856, 34404, 37050, 39794, 42636, 45576, 48614, 51750, 54984, 58316, 61746, 65274, 68900, 72624, 76446
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = 98*n + a(n-1) with a(0)=6. - Vincenzo Librandi, Nov 12 2010
From Amiram Eldar, Feb 19 2023: (Start)
a(n) = A016993(n)*A017053(n).
Sum_{n>=0} 1/a(n) = cot(Pi/7)*Pi/35 = 0.186388....
Product_{n>=0} (1 - 1/a(n)) = cosec(Pi/7)*cos(sqrt(29)*Pi/14).
Product_{n>=0} (1 + 1/a(n)) = cosec(Pi/7)*cos(sqrt(3/7)*Pi/2). (End)
G.f.: -2*(3+43*x+3*x^2)/(x-1)^3. - R. J. Mathar, Apr 23 2024
From Elmo R. Oliveira, Oct 25 2024: (Start)
E.g.f.: exp(x)*(6 + 49*x*(2 + x)).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A137183 Lucky numbers (A000959) which are congruent to 1 mod 7.

Original entry on oeis.org

1, 15, 43, 99, 127, 141, 169, 211, 267, 393, 421, 463, 477, 519, 631, 645, 673, 729, 841, 855, 883, 897, 925, 981, 1009, 1023, 1093, 1107, 1219, 1233, 1261, 1275, 1303, 1387, 1401, 1471, 1485, 1597, 1611, 1639, 1723, 1737, 1765, 1933, 2031, 2059, 2115, 2283
Offset: 1

Views

Author

N. J. A. Sloane, Mar 07 2008

Keywords

Crossrefs

Intersection of A000959 and A016993.
Previous Showing 21-30 of 32 results. Next