cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A168333 a(n) = (14*n + 7*(-1)^n + 1)/4.

Original entry on oeis.org

2, 9, 9, 16, 16, 23, 23, 30, 30, 37, 37, 44, 44, 51, 51, 58, 58, 65, 65, 72, 72, 79, 79, 86, 86, 93, 93, 100, 100, 107, 107, 114, 114, 121, 121, 128, 128, 135, 135, 142, 142, 149, 149, 156, 156, 163, 163, 170, 170, 177, 177, 184, 184, 191, 191, 198, 198, 205, 205
Offset: 1

Views

Author

Vincenzo Librandi, Nov 23 2009

Keywords

Crossrefs

Programs

  • Magma
    [n eq 1 select 2 else 7*n-Self(n-1)-3: n in [1..70]]; // Vincenzo Librandi, Sep 17 2013
  • Mathematica
    CoefficientList[Series[(2 + 7 x - 2 x^2)/((1 + x) (x - 1)^2), {x, 0, 70}], x] (* Vincenzo Librandi, Sep 17 2013 *)
    LinearRecurrence[{1,1,-1},{2,9,9},70] (* Harvey P. Dale, Mar 13 2014 *)

Formula

a(n) = 7*n - a(n-1) - 3, with n>1, a(1)=2.
G.f.: x*(2 + 7*x - 2*x^2)/((1+x)*(x-1)^2). - Vincenzo Librandi, Sep 17 2013
a(n) = a(n-1) +a(n-2) -a(n-3). - Vincenzo Librandi, Sep 17 2013
a(n) = A168331(n) - 1 = A168337(n) + 1 = A168212(n) - 2 = A168374(n) + 2. - Bruno Berselli, Sep 17 2013
E.g.f.: (1/4)*(7 - 8*exp(x) + (14*x + 1)*exp(2*x))*exp(-x). - G. C. Greubel, Jul 18 2016

Extensions

New definition by Bruno Berselli, Sep 17 2013

A017010 a(n) = (7*n+2)^6.

Original entry on oeis.org

64, 531441, 16777216, 148035889, 729000000, 2565726409, 7256313856, 17596287801, 38068692544, 75418890625, 139314069504, 243087455521, 404567235136, 646990183449, 1000000000000, 1500730351849, 2194972623936, 3138428376721, 4398046511104, 6053445140625
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Wesley Ivan Hurt, Apr 22 2016: (Start)
G.f.: (64 + 530993*x + 13058473*x^2 + 41753398*x^3 + 26472118*x^4 + 2876609*x^5 + 15625*x^6)/(1 - x)^7.
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7).
a(n) = A001014(A017005(n)). (End)
E.g.f.: (64 + 531377*x + 7857199*x^2 + 16549750*x^3 + 9808085*x^4 + 1966419*x^5 + 117649*x^6)*exp(x). - Ilya Gutkovskiy, Apr 23 2016

A047310 Numbers that are congruent to {0, 1, 3, 4, 5, 6} mod 7.

Original entry on oeis.org

0, 1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78
Offset: 1

Views

Author

Keywords

Comments

Complement of A017005. - Michel Marcus, Sep 08 2015

Crossrefs

Cf. A017005 (7n+2).

Programs

Formula

G.f.: x^2*(1+2*x+x^2+x^3+x^4+x^5) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Sep 08 2015: (Start)
a(n) = a(n-1)+a(n-6)-a(n-7) for n>7.
a(n) = n + floor((n-3)/6). (End)
From Wesley Ivan Hurt, Jun 15 2016: (Start)
a(n) = (42*n-33-3*cos(n*Pi)+4*sqrt(3)*cos((1-4*n)*Pi/6)-12*sin((1+2*n)*Pi/6))/36.
a(6k) = 7k-1, a(6k-1) = 7k-2, a(6k-2) = 7k-3, a(6k-3) = 7k-4, a(6k-4) = 7k-6, a(6k-5) = 7k-7. (End)

Extensions

More terms from Vincenzo Librandi, Sep 10 2015

A047370 Numbers that are congruent to {2, 3, 5} mod 7.

Original entry on oeis.org

2, 3, 5, 9, 10, 12, 16, 17, 19, 23, 24, 26, 30, 31, 33, 37, 38, 40, 44, 45, 47, 51, 52, 54, 58, 59, 61, 65, 66, 68, 72, 73, 75, 79, 80, 82, 86, 87, 89, 93, 94, 96, 100, 101, 103, 107, 108, 110, 114, 115, 117, 121, 122, 124, 128, 129, 131, 135, 136, 138, 142
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Union of A017005, A017017 and A017041. - Michel Marcus, May 25 2014

Crossrefs

Programs

  • Magma
    [7*Floor((n-1)/3)+2^((n-1) mod 3)+1: n in [1..50]]; // Wesley Ivan Hurt, May 25 2014
    
  • Maple
    A047370:=n->7*floor((n-1)/3) + 2^((n-1) mod 3)+1; seq(A047370(n), n=1..50); # Wesley Ivan Hurt, May 25 2014
  • Mathematica
    Select[Range[200], MemberQ[{2,3,5}, Mod[#,7]]&] (* or *) LinearRecurrence[ {1,0,1,-1}, {2,3,5,9}, 60] (* Harvey P. Dale, Apr 29 2013 *)
    Table[7*Floor[(n - 1)/3] + 2^Mod[n - 1, 3] + 1, {n, 50}] (* Wesley Ivan Hurt, May 25 2014 *)
  • PARI
    x='x + O('x^50); Vec(x*(2+x+2*x^2+2*x^3)/((1+x+x^2)*(x-1)^2)) \\ G. C. Greubel, Feb 21 2017

Formula

G.f.: x*(2+x+2*x^2+2*x^3)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Dec 04 2011
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4, with a(1)=2, a(2)=3, a(3)=5, a(4)=9. - Harvey P. Dale, Apr 29 2013
a(n) = 7*floor((n-1)/3)+2^((n-1) mod 3)+1. - Gary Detlefs, May 25 2014
a(n) = (1/9)*(21*n+4*sqrt(3)*sin((2*Pi*n)/3)-6*cos((2*Pi*n)/3)-12). - Alexander R. Povolotsky, May 25 2014
a(3k) = 7k-2, a(3k-1) = 7k-4, a(3k-2) = 7k-5. - Wesley Ivan Hurt, Jun 10 2016

Extensions

More terms from Wesley Ivan Hurt, May 25 2014

A105452 Numerator of (7 n -1)/3.

Original entry on oeis.org

2, 13, 20, 9, 34, 41, 16, 55, 62, 23, 76, 83, 30, 97, 104, 37, 118, 125, 44, 139, 146, 51, 160, 167, 58, 181, 188, 65, 202, 209, 72, 223, 230, 79, 244, 251, 86, 265, 272, 93, 286, 293, 100, 307, 314, 107, 328, 335, 114, 349
Offset: 1

Views

Author

Zak Seidov, May 02 2005

Keywords

Formula

a(3*n+1) = 7*n+2 = A017005(n), a(3*n+2) = 2*n+13, a(3*n+3) = 21*n+20.
From Chai Wah Wu, Sep 24 2020: (Start)
a(n) = 2*a(n-3) - a(n-6) for n > 6.
G.f.: x*(x^5 + 8*x^4 + 5*x^3 + 20*x^2 + 13*x + 2)/(x^6 - 2*x^3 + 1). (End)

A115020 Count backwards from 100 in steps of 7.

Original entry on oeis.org

100, 93, 86, 79, 72, 65, 58, 51, 44, 37, 30, 23, 16, 9, 2
Offset: 0

Views

Author

Robert Happelberg (roberthappelberg(AT)yahoo.com), Feb 23 2006

Keywords

Comments

Sometimes used to gauge the concentration ability of a patient with Alzheimer's disease. The combination of a simple arithmetic operation with an unusual decrement forces the patient to rely on short-term memory for the computation. Most patients would stop when they get to 2, but the psychiatrist might be satisfied with the first five or so terms. In this capacity the sequence is mentioned a few times in the movie "Safe House" (1998) in which Mace Sowell (Patrick Stewart) tries to memorize the sequence and is asked it by the psychiatrist (Hector Elizondo). In real life, other decrements can be used; Fish (1996) suggests 3 and 4.
In the next-to-last episode of "Boston Legal," Denny Crane (William Shatner) is asked this sequence by a doctor while in an MRI machine. He gets confused at 86, following it with 81. (Both Shatner and Stewart have played captain of the Enterprise on TV.) - Wilfredo Lopez (chakotay147138274(AT)yahoo.com), Dec 03 2008

References

  • Sharon Fish, "Alzheimer's: Caring for Your Loved One, Caring for Yourself", Wheaton, Illinois: Harold Shaw Publishers, 1996, p. 34

Crossrefs

First fifteen terms of A017005 backwards.

Programs

Formula

a(n) = 100 - 7n.

A137184 Lucky numbers (A000959) which are congruent to 2 mod 7.

Original entry on oeis.org

9, 37, 51, 79, 93, 135, 163, 205, 219, 261, 289, 303, 331, 415, 429, 541, 583, 639, 723, 933, 961, 975, 1087, 1101, 1339, 1395, 1563, 1675, 1731, 1773, 1801, 1857, 1899, 1941, 1983, 2053, 2067, 2095, 2221, 2277, 2403, 2445, 2473, 2557, 2571, 2599, 2697, 2725
Offset: 1

Views

Author

N. J. A. Sloane, Mar 07 2008

Keywords

Crossrefs

Intersection of A000959 and A017005.

A177060 a(n) = (7*n+2)*(7*n+5) = 49*n^2 + 49*n + 10.

Original entry on oeis.org

10, 108, 304, 598, 990, 1480, 2068, 2754, 3538, 4420, 5400, 6478, 7654, 8928, 10300, 11770, 13338, 15004, 16768, 18630, 20590, 22648, 24804, 27058, 29410, 31860, 34408, 37054, 39798, 42640, 45580, 48618, 51754, 54988, 58320, 61750, 65278, 68904, 72628, 76450
Offset: 0

Views

Author

Vincenzo Librandi, May 31 2010

Keywords

Comments

Cf. comment of Reinhard Zumkeller in A177059: in general, (h*n+h-k)*(h*n+k) = h^2*A002061(n+1) + (h-k)*k - h^2; therefore a(n) = 49*A002061(n+1) - 39. - Bruno Berselli, Aug 24 2010

Examples

			For n=1, a(1) = 98 + 10 = 108.
For n=2, a(2) = 98*2 + 108 = 304.
For n=3, a(3) = 98*3 + 304 = 598.
		

Crossrefs

Programs

Formula

a(n) = 98*n + a(n-1) with a(0) = 10.
From Amiram Eldar, Feb 19 2023: (Start)
a(n) = A017005(n)*A017041(n).
Sum_{n>=0} 1/a(n) = tan(3*Pi/14)*Pi/21.
Product_{n>=0} (1 - 1/a(n)) = sec(3*Pi/14)*cos(sqrt(13)*Pi/14).
Product_{n>=0} (1 + 1/a(n)) = sec(3*Pi/14)*cos(sqrt(5)*Pi/14). (End)
From Elmo R. Oliveira, Oct 24 2024: (Start)
G.f.: 2*(5 + 39*x + 5*x^2)/(1 - x)^3.
E.g.f.: exp(x)*(10 + 49*x*(2 + x)).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A239796 a(n) = 7*n^2 + 2*n - 15.

Original entry on oeis.org

-6, 17, 54, 105, 170, 249, 342, 449, 570, 705, 854, 1017, 1194, 1385, 1590, 1809, 2042, 2289, 2550, 2825, 3114, 3417, 3734, 4065, 4410, 4769, 5142, 5529, 5930, 6345, 6774, 7217, 7674, 8145, 8630, 9129, 9642, 10169, 10710, 11265, 11834, 12417, 13014, 13625, 14250, 14889, 15542, 16209, 16890
Offset: 1

Views

Author

Katherine Guo, Mar 26 2014

Keywords

Comments

Follows the integer values from 1 on the parabola: 7*n^2 + 2*n - 15.
Real roots: (-1 +- sqrt(106))/7. - Wesley Ivan Hurt, Mar 26 2014
The first in the family of parabolas of the form: prime(k+3)*n^2 + prime(k)*n - prime(k+1)*prime(k+2), where k >= 1 (k=1 gives a(n)). - Wesley Ivan Hurt, Mar 26 2014

Examples

			For n=3, a(3) = 7*3^2 + 2*3 - 15 = 54; for n=6, a(6) = 7*6^2 + 2*6 - 15 = 249.
		

Programs

Formula

a(n) = n * A017005(n) - 15. - Wesley Ivan Hurt, Mar 26 2014
G.f.: -x*(6 - 35*x + 15*x^2)/(1 - x)^3. - Bruno Berselli, Mar 27 2014

A253671 a(n) = floor(A000111(n)/A000111(n-1)).

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 8, 9, 10, 10, 11, 12, 12, 13, 14, 14, 15, 15, 16, 17, 17, 18, 19, 19, 20, 21, 21, 22, 22, 23, 24, 24, 25, 26, 26, 27, 28, 28, 29, 29, 30, 31, 31, 32, 33, 33, 34, 35, 35, 36, 36, 37, 38, 38, 39, 40, 40
Offset: 1

Views

Author

Paul Curtz, Jan 08 2015, with the help of Jean-François Alcover

Keywords

Comments

1, 2, 3, 4, ... first appear at n = 1, 3, 5, 7, 8, 10, 11, 13, ... . a(500) = 318.
Numbers appearing only once: interleave 4+7*n, 6+7*n, 9+7*n = 4, 6, 9, 11, 13, 16, ... .
This is a nondecreasing sequence.
The ratio a(n)/n asymptotically tends to 7/11 = 0.6363... - Jean-François Alcover, Jul 21 2015

Examples

			Floor of 1/1, 1/1, 2/1, 5/2, 16/5, 61/16, ... .
1=1*1+0, 1=1*1+0, 2=2*1+0, 5=2*2+1, 16=3*5+1, 61=3*16+13, 272=4*61+28, ... .
		

Crossrefs

Programs

  • Mathematica
    max = 500; ee = Table[2^n*EulerE[n, 1] + EulerE[n] - 1, {n, 0, max}]; A000111 = Table[Differences[ee, n] // First // Abs, {n, 0, max}]; Table[Quotient[A000111[[n + 1]], A000111[[n]]], {n, 1, max}] (* Jean-François Alcover, Jan 08 2015 *)
  • PARI
    Vec(x*(x^14-x^13+x^12-x^11+x^10+x^9+x^7+x^6+x^4+x^2+1)/((x-1)^2*(x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1)) + O(x^100)) \\ Colin Barker, Jan 22 2015
    
  • Python
    # requires python 3.2 or higher
    from itertools import accumulate
    A253671_list, blist, l1, l2 = [1], [1], 1, 1
    for n in range(10**2):
        blist = list(reversed(list(accumulate(reversed(blist))))) + [0] if n % 2 else [0]+list(accumulate(blist))
        l2, l1 = l1, sum(blist)
        A253671_list.append(l1//l2) # Chai Wah Wu, Jan 29 2015

Formula

a(n+2) = a(n+1) + (0, 1, 0, followed by a sequence of period 11: repeat 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1).
a(n+12) = a(n+1) + (6, 7, 6, followed by 7's = A010727).
a(n) = a(n-1) + a(n-11) - a(n-12) for n>15. - Colin Barker, Jan 22 2015
G.f.: x*(x^14-x^13+x^12-x^11+x^10+x^9+x^7+x^6+x^4+x^2+1) / ((x-1)^2*(x^10+x^9+x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1)). - Colin Barker, Jan 22 2015
Previous Showing 11-20 of 20 results.