cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A100776 a(n) = 997*n + 1009.

Original entry on oeis.org

1009, 2006, 3003, 4000, 4997, 5994, 6991, 7988, 8985, 9982, 10979, 11976, 12973, 13970, 14967, 15964, 16961, 17958, 18955, 19952, 20949, 21946, 22943, 23940, 24937, 25934, 26931, 27928, 28925, 29922, 30919, 31916, 32913, 33910, 34907, 35904, 36901, 37898, 38895
Offset: 0

Views

Author

Parthasarathy Nambi, Jan 03 2005

Keywords

Comments

Note that 997 is the largest three-digit prime and 1009 is the smallest four-digit prime.

Examples

			If n=1, 997*1 + 1009 = 2006.
If n=2, 997*2 + 1009 = 3003.
		

Crossrefs

Programs

Formula

From Elmo R. Oliveira, Dec 07 2024: (Start)
G.f.: (1009 - 12*x)/(1 - x)^2.
E.g.f.: (1009 + 997*x)*exp(x).
a(n) = 2*a(n-1) - a(n-2) for n > 1. (End)

Extensions

More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 19 2005
Edited by Ray Chandler, Jan 25 2005

A101442 a(n) = 9973*n + 10007.

Original entry on oeis.org

10007, 19980, 29953, 39926, 49899, 59872, 69845, 79818, 89791, 99764, 109737, 119710, 129683, 139656, 149629, 159602, 169575, 179548, 189521, 199494, 209467, 219440, 229413, 239386, 249359, 259332, 269305, 279278, 289251, 299224, 309197, 319170, 329143, 339116
Offset: 0

Views

Author

Parthasarathy Nambi, Jan 18 2005

Keywords

Comments

9973 is the largest four-digit prime and 10007 is the smallest five-digit prime.

Examples

			If n=14, then 9973*14 + 10007 = 149629 (a prime).
		

Crossrefs

Programs

Formula

From Elmo R. Oliveira, Dec 07 2024: (Start)
G.f.: (10007 - 34*x)/(1 - x)^2.
E.g.f.: (10007 + 9973*x)*exp(x).
a(n) = 2*a(n-1) - a(n-2) for n > 1. (End)

Extensions

Extended by Ray Chandler, Jan 25 2005

A155151 Triangle T(n, k) = 4*n*k + 2*n + 2*k + 2, read by rows.

Original entry on oeis.org

10, 16, 26, 22, 36, 50, 28, 46, 64, 82, 34, 56, 78, 100, 122, 40, 66, 92, 118, 144, 170, 46, 76, 106, 136, 166, 196, 226, 52, 86, 120, 154, 188, 222, 256, 290, 58, 96, 134, 172, 210, 248, 286, 324, 362, 64, 106, 148, 190, 232, 274, 316, 358, 400, 442, 70, 116, 162
Offset: 1

Views

Author

Vincenzo Librandi, Jan 21 2009

Keywords

Comments

First column: A016957, second column: A017341, third column: 2*A017029, fourth column: A082286. - Vincenzo Librandi, Nov 21 2012
Conjecture: Let p = prime number. If 2^p belongs to the sequence, then 2^p-1 is not a Mersenne prime. - Vincenzo Librandi, Dec 12 2012
Conjecture is true because if T(n, k) = 2^p with p prime, then 2^p-1 = 4*n*k + 2*n + 2*k + 1 = (2*n+1)*(2*k+1) hence 2^p-1 is not prime. - Michel Marcus, May 31 2015
It appears that T(m,p) = 2^p for Lucasian primes (A002515) greater than 3. For instance: T(44, 11) = 2^11, T(89240, 23) = 2^23. - Michel Marcus, May 28 2015
For n > 1, ascending numbers along the diagonal are also terms of the even principal diagonal of a 2n X 2n spiral (A137928). - Avi Friedlich, May 21 2015

Examples

			Triangle begins
  10;
  16,  26;
  22,  36,  50;
  28,  46,  64,  82;
  34,  56,  78, 100, 122;
  40,  66,  92, 118, 144, 170;
  46,  76, 106, 136, 166, 196, 226;
  52,  86, 120, 154, 188, 222, 256, 290;
  58,  96, 134, 172, 210, 248, 286, 324, 362;
  64, 106, 148, 190, 232, 274, 316, 358, 400, 442;
		

Crossrefs

Programs

  • Magma
    [4*n*k + 2*n + 2*k + 2: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 21 2012
    
  • Maple
    seq(seq( 2*(2*n*k+n+k+1), k=1..n), n=1..15) # G. C. Greubel, Mar 21 2021
  • Mathematica
    T[n_,k_]:=4*n*k + 2*n + 2*k + 2; Table[T[n, k], {n, 11}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 21 2012 *)
  • Sage
    flatten([[2*(2*n*k+n+k+1) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 21 2021

Formula

T(n, k) = 2*A144650(n, k).
Sum_{k=1..n} T(n,k) = n*(2*n^2 + 5*n + 3) = n*A014105(n+2) =

Extensions

Edited by Robert Hochberg, Jun 21 2010

A155550 Triangle read by rows where T(m,n)=2*m*n + m + n - 6.

Original entry on oeis.org

-2, 1, 6, 4, 11, 18, 7, 16, 25, 34, 10, 21, 32, 43, 54, 13, 26, 39, 52, 65, 78, 16, 31, 46, 61, 76, 91, 106, 19, 36, 53, 70, 87, 104, 121, 138, 22, 41, 60, 79, 98, 117, 136, 155, 174, 25, 46, 67, 88, 109, 130, 151, 172, 193, 214, 28, 51, 74, 97, 120, 143, 166, 189, 212
Offset: 1

Views

Author

Vincenzo Librandi, Jan 24 2009

Keywords

Comments

Numbers n such that 2n+13 is not prime.
First column: A016777, second column: A016861, third column: A017029, fourth column: A017245. - Vincenzo Librandi, Nov 21 2012

Examples

			Triangle begins:
-2;
1,  6;
4,  11, 18;
7,  16, 25, 34;
10, 21, 32, 43, 54;
13, 26, 39, 52, 65,  78;
16, 31, 46, 61, 76,  91,  106;
19, 36, 53, 70, 87,  104, 121, 138;
22, 41, 60, 79, 98,  117, 136, 155, 174;
25, 46, 67, 88, 109, 130, 151, 172, 193, 214; etc.
		

Crossrefs

Programs

  • Magma
    [2*n*k + n + k - 6: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 21 2012
  • Mathematica
    t[n_,k_]:= 2 n*k + n + k - 6; Table[t[n, k], {n, 15}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 21 2012 *)

A177071 a(n) = (7*n + 3)*(7*n + 4).

Original entry on oeis.org

12, 110, 306, 600, 992, 1482, 2070, 2756, 3540, 4422, 5402, 6480, 7656, 8930, 10302, 11772, 13340, 15006, 16770, 18632, 20592, 22650, 24806, 27060, 29412, 31862, 34410, 37056, 39800, 42642, 45582, 48620, 51756, 54990, 58322, 61752, 65280, 68906, 72630, 76452
Offset: 0

Views

Author

Vincenzo Librandi, May 31 2010

Keywords

Comments

Cf. Zumkeller's contribution in A177059: in general, (h*n+h-k)*(h*n+k) = h^2*A002061(n+1) + (h-k)*k - h^2, therefore a(n) = 49*A002061(n+1) - 37. - Bruno Berselli, Aug 24 2010

Crossrefs

Programs

  • Mathematica
    Table[(7n+3)(7n+4),{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{12,110,306},40] (* Harvey P. Dale, Oct 09 2011 *)
  • PARI
    a(n)=2*binomial(7*n+4,2) \\ Charles R Greathouse IV, Jan 11 2012

Formula

a(n) = 98*n + a(n-1) with n > 0, a(0)=12.
From Harvey P. Dale, Oct 09 2011: (Start)
a(0)=12, a(1)=110, a(2)=306, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: -((2*(x+6)*(6*x+1))/(x-1)^3). (End)
From Amiram Eldar, Feb 19 2023: (Start)
a(n) = A017017(n)*A017029(n).
Sum_{n>=0} 1/a(n) = tan(Pi/14)*Pi/7.
Product_{n>=0} (1 - 1/a(n)) = sec(Pi/14)*cos(sqrt(5)*Pi/14).
Product_{n>=0} (1 + 1/a(n)) = sec(Pi/14)*cosh(sqrt(3)*Pi/14). (End)
From Elmo R. Oliveira, Oct 27 2024: (Start)
E.g.f.: exp(x)*(12 + 49*x*(2 + x)).
a(n) = 2*A061792(n). (End)

Extensions

Edited by N. J. A. Sloane, Jun 22 2010

A330613 Triangle read by rows: T(n, k) = 1 + k - 2*n - 2*k*n + 2*n^2, with 0 <= k < n.

Original entry on oeis.org

1, 5, 2, 13, 8, 3, 25, 18, 11, 4, 41, 32, 23, 14, 5, 61, 50, 39, 28, 17, 6, 85, 72, 59, 46, 33, 20, 7, 113, 98, 83, 68, 53, 38, 23, 8, 145, 128, 111, 94, 77, 60, 43, 26, 9, 181, 162, 143, 124, 105, 86, 67, 48, 29, 10, 221, 200, 179, 158, 137, 116, 95, 74, 53, 32, 11
Offset: 1

Views

Author

Stefano Spezia, Dec 20 2019

Keywords

Comments

T(n, k) is the k-th super- and subdiagonal sum of the matrix M(n) whose permanent is A330287(n).

Examples

			n\k|   0   1   2   3   4   5
---+------------------------
1  |   1
2  |   5   2
3  |  13   8   3
4  |  25  18  11   4
5  |  41  32  23  14   5
6  |  61  50  39  28  17   6
...
For n = 3 the matrix M is
      1, 2, 3
      2, 4, 6
      3, 6, 8
and therefore T(3, 0) = 1 + 4 + 8 = 13, T(3, 1) = 2 + 6 = 8 and T(3, 2) = 3.
		

Crossrefs

Cf. A000027: diagonal; A001105: 2nd column; A001844: 1st column; A016789: 1st subdiagonal; A016885: 2nd subdiagonal; A017029: 3rd subdiagonal; A017221: 4th subdiagonal; A017461: 5th subdiagonal; A081436: row sums; A132209: 3rd column; A164284: 7th subdiagonal; A269044: 6th subdiagonal.

Programs

  • Mathematica
    Flatten[Table[1+k-2n-2k*n+2n^2,{n,1,11},{k,0,n-1}]] (* or *)
    r[n_] := Table[SeriesCoefficient[(1-x*(2-5x+2(1+x)y))/((1-x)^3*(1-y)^2), {x, 0, i}, {y, 0, j}], {i, n, n}, {j, 0, n-1}]; Flatten[Array[r, 11]] (* or *)
    r[n_] := Table[SeriesCoefficient[Exp[x+y]*(1+2x(x-y)+y), {x, 0, i}, {y, 0, j}]*i!*j!, {i, n, n}, {j, 0, n-1}]; Flatten[Array[r, 11]]

Formula

O.g.f.: (1 - x*(2 - 5*x + 2*(1 + x)*y))/((1 - x)^3*(1 - y)^2).
E.g.f.: exp(x+y)*(1 + 2*x*(x - y) + y).
T(n, k) = A001844(n-1) - k*A005408(n-1), with 0 <= k < n. [Typo corrected by Stefano Spezia, Feb 14 2020]

A017030 a(n) = (7*n + 4)^2.

Original entry on oeis.org

16, 121, 324, 625, 1024, 1521, 2116, 2809, 3600, 4489, 5476, 6561, 7744, 9025, 10404, 11881, 13456, 15129, 16900, 18769, 20736, 22801, 24964, 27225, 29584, 32041, 34596, 37249, 40000, 42849, 45796
Offset: 0

Views

Author

Keywords

Programs

Formula

a(n) = A017029(n)^2. - Michel Marcus, Nov 11 2013
Sum{n>=0} 1/a(n) = psi'(4/7)/49 = 0.080438723... - R. J. Mathar, May 07 2024

A047374 Numbers that are congruent to {4, 5} mod 7.

Original entry on oeis.org

4, 5, 11, 12, 18, 19, 25, 26, 32, 33, 39, 40, 46, 47, 53, 54, 60, 61, 67, 68, 74, 75, 81, 82, 88, 89, 95, 96, 102, 103, 109, 110, 116, 117, 123, 124, 130, 131, 137, 138, 144, 145, 151, 152, 158, 159, 165, 166, 172
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[200], MemberQ[{4, 5}, Mod[#, 7]] &] (* Amiram Eldar, May 07 2021 *)
  • PARI
    a(n) = (14*n - 5*(-1)^n - 3)/4 \\ David Lovler, Sep 15 2022

Formula

G.f.: x*(4 + x + 2*x^2)/((1 + x)*(x - 1)^2). - R. J. Mathar, Dec 04 2011
a(n) = -(5/4)*(-1)^n + 7*(n-1)/2 + 11/4. - Viet Quoc Le Tran, Jun 14 2014
a(n) = (14*n - 5*(-1)^n - 3)/4. - David Lovler, Sep 15 2022
E.g.f.: 2 + ((14*x - 3)*exp(x) - 5*exp(-x))/4. - David Lovler, Sep 15 2022

A186041 Numbers of the form 3*k + 2, 5*k + 3, or 7*k + 4.

Original entry on oeis.org

2, 3, 4, 5, 8, 11, 13, 14, 17, 18, 20, 23, 25, 26, 28, 29, 32, 33, 35, 38, 39, 41, 43, 44, 46, 47, 48, 50, 53, 56, 58, 59, 60, 62, 63, 65, 67, 68, 71, 73, 74, 77, 78, 80, 81, 83, 86, 88, 89, 92, 93, 95, 98, 101, 102, 103, 104, 107, 108, 109, 110, 113, 116, 118, 119, 122
Offset: 1

Views

Author

Klaus Brockhaus, Feb 11 2011, Mar 09 2011

Keywords

Comments

n is in the sequence iff n is in A016789 or in A016885 or in A017029.
First differences are periodic with period length 57. Least common multiple of 3, 5, 7 is 105; number of terms <= 105 is 57.
Sequence is not essentially the same as A053726: a(n) = A053726(n-3) for 3 < n < 33, a(34)=62, A053726(34-3)=61.
Sequence is not essentially the same as A104275: a(n) = A104275(n-2) for 3 < n < 33, a(34)=62, A104275(34-3)=61.

Crossrefs

Programs

  • Magma
    IsA186041:=func< n | exists{ k: k in [0..n div 3] | n in [3*k+2, 5*k+3, 7*k+4] } >; [ n: n in [1..200] | IsA186041(n) ];
  • Mathematica
    Take[With[{no=50},Union[Join[3Range[0,no]+2,5Range[0,no]+3,7Range[0,no]+4]]],70]  (* Harvey P. Dale, Feb 16 2011 *)

Formula

a(n) = a(n-57) + 105.
a(n) = a(n-1) + a(n-57) - a(n-58).
G.f.: x*(x^57 + x^56 + x^55 + x^54 + 3*x^53 + 3*x^52 + 2*x^51 + x^50 + 3*x^49 + x^48 + 2*x^47 + 3*x^46 + 2*x^45 + x^44 + 2*x^43 + x^42 + 3*x^41 + x^40 + 2*x^39 + 3*x^38 + x^37 + 2*x^36 + 2*x^35 + x^34 + 2*x^33 + x^32 + x^31 + 2*x^30 + 3*x^29 + 3*x^28 + 2*x^27 + x^26 + x^25 + 2*x^24 + x^23 + 2*x^22 + 2*x^21 + x^20 + 3*x^19 + 2*x^18 + x^17 + 3*x^16 + x^15 + 2*x^14 + x^13 + 2*x^12 + 3*x^11 + 2*x^10 + x^9 + 3*x^8 + x^7 + 2*x^6 + 3*x^5 + 3*x^4 + x^3 + x^2 + x + 2) / ((x - 1)^2*(x^2 + x + 1)*(x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x^36 - x^35 + x^33 - x^32 + x^30 - x^29 + x^27 - x^26 + x^24 - x^23 + x^21 - x^20 + x^18 - x^16 + x^15 - x^13 + x^12 - x^10 + x^9 - x^7 + x^6 - x^4 + x^3 - x + 1)).

A354937 Row 7 of A354940: Numbers k for which A345992(k) = 7, divided by 7.

Original entry on oeis.org

4, 5, 8, 11, 15, 19, 22, 25, 29, 32, 39, 43, 47, 50, 53, 57, 61, 64, 67, 71, 78, 81, 89, 92, 95, 99, 103, 106, 109, 113, 127, 131, 134, 137, 141, 151, 155, 162, 169, 173, 176, 179, 183, 190, 193, 197, 211, 218, 229, 232, 239, 243, 256, 257, 263, 267, 271, 274, 277, 281, 291, 295, 302, 309, 313, 316, 323, 337, 344
Offset: 1

Views

Author

Antti Karttunen, Jun 15 2022

Keywords

Comments

Apparently, all terms are either of the form 7k+1 (in A016993), 7k+4 (A017029) or 7k+5 (A017041).

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{m = 1}, While[!Divisible[m*(m + 1), 7*n], m++]; GCD[7*n, m] == 7]; Select[Range[345], q] (* Amiram Eldar, Jun 17 2022 *)
  • PARI
    A354937(n) = A354940sq(7,n);
Previous Showing 11-20 of 24 results. Next