cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 69 results. Next

A050490 a(n) = C(n)*(11n+1) where C(n) = Catalan numbers (A000108).

Original entry on oeis.org

1, 12, 46, 170, 630, 2352, 8844, 33462, 127270, 486200, 1864356, 7171892, 27665596, 106977600, 414538200, 1609344270, 6258307590, 24373220520, 95050101300, 371125269900, 1450670612820, 5676173948640, 22230262964520, 87137141867100, 341824599040860, 1341897206800752
Offset: 0

Views

Author

Barry E. Williams, Dec 27 1999

Keywords

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Column k=11 of A330965.

Programs

  • Magma
    [Catalan(n)*(11*n+1):n in [0..25] ]; // Marius A. Burtea, Jan 05 2020
  • Mathematica
    Table[CatalanNumber[n](11n+1),{n,0,20}] (* Harvey P. Dale, Jul 12 2018 *)

Formula

From R. J. Mathar, Feb 13 2015: (Start)
5*(n+1)*a(n) + (-29*n-1)*a(n-1) + 18*(2*n-3)*a(n-2) = 0.
-(n+1)*(11*n-10)*a(n) + 2*(11*n+1)*(2*n-1)*a(n-1) = 0. (End)
G.f.: (5 - 9*x - 5*sqrt(1 - 4*x))/(x*sqrt(1 - 4*x)). - Amiram Eldar, Jul 08 2023

Extensions

Terms a(21) and beyond from Andrew Howroyd, Jan 05 2020

A279895 a(n) = n*(5*n + 11)/2.

Original entry on oeis.org

0, 8, 21, 39, 62, 90, 123, 161, 204, 252, 305, 363, 426, 494, 567, 645, 728, 816, 909, 1007, 1110, 1218, 1331, 1449, 1572, 1700, 1833, 1971, 2114, 2262, 2415, 2573, 2736, 2904, 3077, 3255, 3438, 3626, 3819, 4017, 4220, 4428, 4641, 4859, 5082, 5310, 5543, 5781, 6024, 6272, 6525
Offset: 0

Views

Author

Bruno Berselli, Dec 22 2016

Keywords

Crossrefs

Second bisection of A165720.
The first differences are in A016885.
Cf. similar sequences provided by P(s,m)+s*m, where P(s,m) = ((s-2)*m^2-(s-4)*m)/2 is the m-th s-gonal number: A008585 (s=2), A055999 (s=3), A028347 (s=4), A140091 (s=5), A033537 (s=6), this sequence (s=7), A067725 (s=8).

Programs

  • Magma
    [n*(5*n+11)/2: n in [0..60]];
  • Mathematica
    Table[n (5 n + 11)/2, {n, 0, 60}]
    LinearRecurrence[{3,-3,1},{0,8,21},60] (* Harvey P. Dale, Nov 14 2022 *)
  • PARI
    vector(60, n, n--; n*(5*n+11)/2)
    
  • Python
    [n*(5*n+11)/2 for n in range(60)]
    
  • Sage
    [n*(5*n+11)/2 for n in range(60)]
    

Formula

O.g.f.: x*(8 - 3*x)/(1 - x)^3.
E.g.f.: x*(16 + 5*x)*exp(x)/2.
a(n+h) - a(n-h) = h*A017281(n+1), with h>=0. A particular case:
a(n) - a(-n) = 11*n = A008593(n).
a(n+h) + a(n-h) = 2*a(n) + A033429(h), with h>=0. A particular case:
a(n) + a(-n) = A033429(n).
a(n) - a(n-2) = A017281(n) for n>1. Also:
40*a(n) + 121 = A017281(n+1)^2.
a(n) = A000566(n) + 7*n, also a(n) = A000566(n) + A008589(n). - Michel Marcus, Dec 22 2016

A346510 a(n) is the number of nontrivial divisors of A346507(n) ending with 1.

Original entry on oeis.org

1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 2, 4, 2, 4, 2
Offset: 1

Views

Author

Stefano Spezia, Jul 21 2021

Keywords

Examples

			a(42) = 4 since there are 4 nontrivial divisors of A346507(42) = 2541 ending with 1: 11, 21, 121 and 231.
		

Crossrefs

Cf. A017281, A070824, A346388 (ending with 5), A346389 (ending with 6), A346392, A346507, A346508, A346509.

Programs

  • Mathematica
    b={}; For[n=1, n<=500, n++, For[k=1, kMax[b], AppendTo[b, 10n+1]]]]; (* A346507 *) a={}; For[i =1, i<=Length[b], i++, AppendTo[a, Length[Drop[Select[Divisors[Part[b, i]], (Mod[#, 10]==1&)], -1]]-1]]; a
  • PARI
    f(n) = sumdiv(n, d, (d>1) && (d(f(x)), [1..5000])) \\ Michel Marcus, Jul 28 2021
    
  • Python
    from sympy import divisors
    def f(n): return sum(d%10 == 1 for d in divisors(n)[1:-1])
    def A346507upto(lim): return sorted(set(a*b for a in range(11, lim//11+1, 10) for b in range(a, lim//a+1, 10)))
    print(list(map(f, A346507upto(5000)))) # Michael S. Branicky, Jul 31 2021

Formula

a(n) = A346392(A346507(n)) - 1.

A354336 a(n) is the integer w such that (L(2*n)^2, -L(2*n-1)^2, -w) is a primitive solution to the Diophantine equation 2*x^3 + 2*y^3 + z^3 = 125, where L(n) is the n-th Lucas number (A000032).

Original entry on oeis.org

1, 11, 61, 401, 2731, 18701, 128161, 878411, 6020701, 41266481, 282844651, 1938646061, 13287677761, 91075098251, 624238009981, 4278590971601, 29325898791211, 201002700566861, 1377693005176801, 9442848335670731, 64722245344518301, 443612869075957361
Offset: 0

Views

Author

XU Pingya, Jun 20 2022

Keywords

Comments

Subsequence of A017281.

Examples

			2*(L(4)^2)^3 + 2*(-L(3)^2)^3 + (-61)^3 = 2*(49)^3 + 2*(-1)^3 + (-61)^3 = 125, a(2) = 61.
		

Crossrefs

Programs

  • Mathematica
    LucasL[4*Range[22]-3] + 1 - LucasL[2*Range[22]-3]^2

Formula

a(n) = (-125 + 2*A005248(n)^6 - 2*A002878(n-1)^6)^(1/3).
a(n) = Lucas(4*n+1) - Lucas(4*n-2) + 3 = A056914(n) - 15*A092521(n-1), for n > 1.
a(n) = Lucas(4*n+1) + 1 - Lucas(2*n-1)^2.
a(n) = 2*A081015(n-1) + 1.
a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
G.f.: (1 + 3*x - 19*x^2)/((1 - x)*(1 - 7*x + x^2)). - Stefano Spezia, Jun 22 2022
a(n) = (F(2*n+1) + F(2*n-1))^2 + (F(2*n+1) + F(2*n-1)) * (F(2*n-1) + F(2*n-3)) - (F(2*n-1) + F(2*n-3))^2. - XU Pingya, Jul 17 2024

A385623 Array read by ascending antidiagonals: A(n,k) is the number obtained by concatenation of n with k in that order, with k >= 0.

Original entry on oeis.org

0, 10, 1, 20, 11, 2, 30, 21, 12, 3, 40, 31, 22, 13, 4, 50, 41, 32, 23, 14, 5, 60, 51, 42, 33, 24, 15, 6, 70, 61, 52, 43, 34, 25, 16, 7, 80, 71, 62, 53, 44, 35, 26, 17, 8, 90, 81, 72, 63, 54, 45, 36, 27, 18, 9, 100, 91, 82, 73, 64, 55, 46, 37, 28, 19, 10, 110, 101, 92, 83, 74, 65, 56, 47, 38, 29, 110, 11
Offset: 0

Views

Author

Stefano Spezia, Jul 05 2025

Keywords

Examples

			Array begins as:
   0,  1,  2,  3,  4,  5,  6,  7, ...
  10, 11, 12, 13, 14, 15, 16, 17, ...
  20, 21, 22, 23, 24, 25, 26, 27, ...
  30, 31, 32, 33, 34, 35, 36, 37, ...
  40, 41, 42, 43, 44, 45, 46, 47, ...
  50, 51, 52, 53, 54, 55, 56, 57, ...
  60, 61, 62, 63, 64, 65, 66, 67, ...
  ...
		

Crossrefs

Cf. A001477 (1st row), A020338 (main diagonal), A055642, A385624 (antidiagonal sums).

Programs

  • Mathematica
    A[n_,k_]:=FromDigits[Join[IntegerDigits[n],IntegerDigits[k]]]; Table[A[n,k],{n,0,6},{k,0,7}] (* or *)
    A[n_,k_]:=If[k==0,10n,n*10^(Floor[Log10[k]]+1)+k]; Table[A[n-k,k],{n,0,11},{k,0,n}]//Flatten
  • PARI
    T(n, k) = fromdigits(concat(digits(n), digits(k))); \\ Michel Marcus, Jul 06 2025

Formula

A(n,0) = 10*n and A(n,k) = n*10^(floor(log_10(k)) + 1) + k for k > 0.

A001535 a(n) = (10n+1)*(10n+9).

Original entry on oeis.org

9, 209, 609, 1209, 2009, 3009, 4209, 5609, 7209, 9009, 11009, 13209, 15609, 18209, 21009, 24009, 27209, 30609, 34209, 38009, 42009, 46209, 50609, 55209, 60009, 65009, 70209, 75609, 81209, 87009, 93009, 99209, 105609, 112209, 119009, 126009, 133209, 140609
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    seq((10*n+1)*(10*n+9),n = 0 .. 100); # Robert Israel, Dec 17 2014
  • Mathematica
    Times@@@Table[10n+{1,9},{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{9,209,609},40] (* Harvey P. Dale, Oct 15 2014 *)
    CoefficientList[Series[(9 + 182 x + 9 x^2) / (1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Dec 17 2014 *)
  • PARI
    a(n)=(10*n+1)*(10*n+9) \\ Charles R Greathouse IV, Jun 16 2017

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=9, a(1)=209, a(2)=609. - Harvey P. Dale, Oct 15 2014
G.f.: (9 + 182*x + 9*x^2)/(1 - x)^3. - Vincenzo Librandi, Dec 17 2014
E.g.f.: (100*x^2 + 200*x + 9)*exp(x). - Robert Israel, Dec 17 2014
From Amiram Eldar, Feb 20 2023: (Start)
a(n) = A017281(n)*A017377(n).
Sum_{n>=0} 1/a(n) = sqrt(5+2*sqrt(5))*Pi/80.
Sum_{n>=0} (-1)^n/a(n) = (sqrt(10+2*sqrt(5)) * log(cot(Pi/20)) + sqrt(10-2*sqrt(5)) * log(cot(3*Pi/20)))/80.
Product_{n>=0} (1 - 1/a(n)) = 2*phi*cos(sqrt(17)*Pi/10), where phi is the golden ratio (A001622).
Product_{n>=0} (1 + 1/a(n)) = 2*phi*cos(sqrt(15)*Pi/10). (End)

A017290 a(n) = (10*n + 1)^10.

Original entry on oeis.org

1, 25937424601, 16679880978201, 819628286980801, 13422659310152401, 119042423827613001, 713342911662882601, 3255243551009881201, 12157665459056928801, 38941611811810745401, 110462212541120451001
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A011557(A017281(n)). - Wesley Ivan Hurt, Jan 29 2014

A017291 a(n) = (10*n + 1)^11.

Original entry on oeis.org

1, 285311670611, 350277500542221, 25408476896404831, 550329031716248441, 6071163615208263051, 43513917611435838661, 231122292121701565271, 984770902183611232881, 3543686674874777831491, 11156683466653165551101
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A008455 (n^11), A017281 (10n+1).

Programs

A032585 Lucky numbers ending with digit 1.

Original entry on oeis.org

1, 21, 31, 51, 111, 141, 151, 171, 201, 211, 231, 241, 261, 321, 331, 361, 391, 421, 451, 511, 541, 591, 601, 621, 631, 651, 741, 781, 801, 831, 841, 931, 961, 981, 991, 1011, 1021, 1041, 1101, 1201, 1231, 1251, 1261, 1281, 1291, 1401, 1441, 1471, 1491
Offset: 1

Views

Author

Patrick De Geest, Apr 15 1998

Keywords

Comments

Also, lucky numbers (A000959) which are congruent to 1 mod 5. - R. J. Mathar, Apr 29 2008

Crossrefs

Intersection of A000959 and A017281.

A053178 Numbers ending in 1 which are not prime.

Original entry on oeis.org

1, 21, 51, 81, 91, 111, 121, 141, 161, 171, 201, 221, 231, 261, 291, 301, 321, 341, 351, 361, 371, 381, 391, 411, 441, 451, 471, 481, 501, 511, 531, 551, 561, 581, 591, 611, 621, 651, 671, 681, 711, 721, 731, 741, 771, 781, 791, 801, 831, 841, 851, 861, 871
Offset: 1

Views

Author

Enoch Haga, Feb 29 2000

Keywords

Comments

Nonprime numbers of the form k*10+1. - Juri-Stepan Gerasimov, Oct 14 2009

Examples

			a(4) = 91 may look prime to some, but is composite.
		

Crossrefs

Programs

  • Maple
    remove(isprime, [10*j+1$j=0..99])[];  # Alois P. Heinz, Jan 21 2021
  • PARI
    isok(n) = ((n % 10) == 1) && (! isprime(n)) \\ Michel Marcus, Jul 26 2013
    
  • Python
    from sympy import isprime
    def aupto(lim): return [m for m in range(1, lim+1, 10) if not isprime(m)]
    print(aupto(871)) # Michael S. Branicky, Jan 21 2021
Previous Showing 51-60 of 69 results. Next